Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Parallel Wavelet-Based Clustering Algorithm on Gpus Using Cuda

dc.contributor.author Ozdogan, Cem
dc.contributor.author Yildirim, Ahmet Artu
dc.contributor.other 01. Çankaya Üniversitesi
dc.contributor.other 09. Rektörlük
dc.contributor.other 09.01. Ortak Dersler Bölümü
dc.date.accessioned 2016-06-22T09:02:36Z
dc.date.accessioned 2025-09-18T12:49:14Z
dc.date.available 2016-06-22T09:02:36Z
dc.date.available 2025-09-18T12:49:14Z
dc.date.issued 2011
dc.description Yildirim, Ahmet Artu/0000-0001-6555-765X; Ozdogan, Cem/0000-0002-9644-0013 en_US
dc.description.abstract There has been a substantial interest in scientific and engineering computing community to speed up the CPU-intensive tasks on graphical processing units (GPUs) with the development of many-core GPUs as having very large memory bandwidth and computational power. Cluster analysis is a widely used technique for grouping a set of objects into classes of "similar" objects and commonly used in many fields such as data mining, bioinformatics and pattern recognition. WaveCluster defines the notion of cluster as a dense region consisting of connected components in the transformed feature space. In this study, we present the implementation of WaveCluster algorithm as a novel clustering approach based on wavelet transform to GPU level parallelization and investigate the parallel performance for very large spatial datasets. The CUDA implementations of two main sub-algorithms of WaveCluster approach; namely extraction of low-frequency component from the signal using wavelet transform and connected component labeling are presented. Then, the corresponding performance evaluations are reported for each sub-algorithm. Divide and conquer approach is followed on the implementation of wavelet transform and multi-pass sliding window approach on the implementation of connected component labeling. The maximum achieved speedup is found in kernel as 107x in the computation of extraction of the low-frequency component and 6x in the computation of connected component labeling with respect to the sequential algorithms running on the CPU. (C) 2010 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Guest Editor. en_US
dc.identifier.citation Yıldırım, A.A., Özdoğan, C. (2011). Parallel wavelet-based clustering algorithm on GPUs using CUDA. World Conference on Information Technology-Procedia Computer Science, 396-400. http://dx.doi.org/10.1016/j.procs.2010.12.066 en_US
dc.identifier.doi 10.1016/j.procs.2010.12.066
dc.identifier.issn 1877-0509
dc.identifier.scopus 2-s2.0-79952511618
dc.identifier.uri https://doi.org/10.1016/j.procs.2010.12.066
dc.identifier.uri https://hdl.handle.net/123456789/12299
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.ispartof 1st World Conference on Information Technology (WCIT) -- OCT 06-10, 2010 -- Bahcesehir Univ, Istanbul, TURKEY en_US
dc.relation.ispartofseries Procedia Computer Science
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Gpu Computing en_US
dc.subject Cuda en_US
dc.subject Cluster Analysis en_US
dc.subject Wavecluster Algorithm en_US
dc.title Parallel Wavelet-Based Clustering Algorithm on Gpus Using Cuda en_US
dc.title Parallel wavelet-based clustering algorithm on GPUs using CUDA tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Yildirim, Ahmet Artu/0000-0001-6555-765X
gdc.author.id Ozdogan, Cem/0000-0002-9644-0013
gdc.author.institutional Özdoğan, Cem
gdc.author.scopusid 37058218500
gdc.author.scopusid 7801368240
gdc.author.wosid Ozdogan, Cem/L-2685-2013
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Yildirim, Ahmet Artu; Ozdogan, Cem] Cankaya Univ, Dept Comp Engn, TR-06530 Ankara, Turkey en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 3 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.identifier.openalex W2010966008
gdc.identifier.wos WOS:000299159800064
gdc.openalex.fwci 1.79062797
gdc.openalex.normalizedpercentile 0.87
gdc.opencitations.count 10
gdc.plumx.crossrefcites 10
gdc.plumx.mendeley 27
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.wos.citedcount 5
relation.isAuthorOfPublication ea22b624-d90d-48d1-b3d1-addccc6b280d
relation.isAuthorOfPublication.latestForDiscovery ea22b624-d90d-48d1-b3d1-addccc6b280d
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication 79403971-5ab2-4efd-ac9e-f03745af3705
relation.isOrgUnitOfPublication c26f9572-660d-46b5-a627-8e3068321c89
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files