Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Computing Non-Stationary (S, S) Policies Using Mixed Integer Linear Programming

dc.contributor.author Xiang, Mengyuan
dc.contributor.author Rossi, Roberto
dc.contributor.author Martin-Barragan, Belen
dc.contributor.author Tarim, S. Armagan
dc.contributor.authorID 6641 tr_TR
dc.contributor.other 03.04. İşletme
dc.contributor.other 03. İktisadi ve İdari Birimler Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2018-09-19T07:21:41Z
dc.date.accessioned 2025-09-18T12:47:48Z
dc.date.available 2018-09-19T07:21:41Z
dc.date.available 2025-09-18T12:47:48Z
dc.date.issued 2018
dc.description Tarim, S. Armagan/0000-0001-5601-3968; Rossi, Roberto/0000-0001-7247-1010; Martin-Barragan, Belen/0000-0003-4807-2700 en_US
dc.description.abstract This paper addresses the single-item single-stocking location non-stationary stochastic lot sizing problem under the (s, S) control policy. We first present a mixed integer non-linear programming (MINLP) formulation for determining near-optimal (s, S) policy parameters. To tackle larger instances, we then combine the previously introduced MINLP model and a binary search approach. These models can be reformulated as mixed integer linear programming (MILP) models which can be easily implemented and solved by using off-the-shelf optimization software. Computational experiments demonstrate that optimality gaps of these models are less than 0.3% of the optimal policy cost and computational times are reasonable. (C) 2018 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 12
dc.identifier.citation Xiang, M., Rossi, R., Martin-Barragan, B., Tarım, S.A. (2018). Computing non-stationary (s, S) policies using mixed integer linear programming. European Journal of Operational Research, 271(2), 490-500. http://dx.doi.org/10.1016/j.ejor.2018.05.030 en_US
dc.identifier.doi 10.1016/j.ejor.2018.05.030
dc.identifier.issn 0377-2217
dc.identifier.issn 1872-6860
dc.identifier.scopus 2-s2.0-85048834894
dc.identifier.uri https://doi.org/10.1016/j.ejor.2018.05.030
dc.identifier.uri https://hdl.handle.net/123456789/11891
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Inventory en_US
dc.subject (S, S) Policy en_US
dc.subject Stochastic Lot-Sizing en_US
dc.subject Mixed Integer Programming en_US
dc.subject Binary Search en_US
dc.title Computing Non-Stationary (S, S) Policies Using Mixed Integer Linear Programming en_US
dc.title Computing non-stationary (s, S) policies using mixed integer linear programming tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Tarim, S. Armagan/0000-0001-5601-3968
gdc.author.id Rossi, Roberto/0000-0001-7247-1010
gdc.author.id Martin-Barragan, Belen/0000-0003-4807-2700
gdc.author.institutional Tarım, Şahap Armağan
gdc.author.scopusid 57202572816
gdc.author.scopusid 35563636800
gdc.author.scopusid 8369680400
gdc.author.scopusid 6506794189
gdc.author.wosid Tarim, S./B-4414-2010
gdc.author.wosid Rossi, Roberto/B-4397-2010
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Xiang, Mengyuan; Rossi, Roberto; Martin-Barragan, Belen] Univ Edinburgh, Business Sch, Edinburgh, Midlothian, Scotland; [Tarim, S. Armagan] Cankaya Univ, Dept Management, Ankara, Turkey en_US
gdc.description.endpage 500 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 490 en_US
gdc.description.volume 271 en_US
gdc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
gdc.description.wosquality Q1
gdc.identifier.openalex W2593990685
gdc.identifier.wos WOS:000440960300009
gdc.openalex.fwci 3.34397442
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 17
gdc.plumx.mendeley 30
gdc.plumx.scopuscites 23
gdc.scopus.citedcount 23
gdc.wos.citedcount 18
relation.isAuthorOfPublication 40db3dae-72a8-4c05-9302-fc2951a23b59
relation.isAuthorOfPublication.latestForDiscovery 40db3dae-72a8-4c05-9302-fc2951a23b59
relation.isOrgUnitOfPublication 9b4a8eed-e4b0-49f2-bcc6-6d23bcbf1218
relation.isOrgUnitOfPublication da4f5829-5e26-41bc-9c75-12779175bb39
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 9b4a8eed-e4b0-49f2-bcc6-6d23bcbf1218

Files