A Generalized Lyapunov-Type Inequality in the Frame of Conformable Derivatives
No Thumbnail Available
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Springeropen
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
We prove a generalized Lyapunov-type inequality for a conformable boundary value problem (BVP) of order alpha is an element of (1, 2]. Indeed, it is shown that if the boundary value problem (T(alpha)(c)x)(t) + r(t) x(t) = 0, t is an element of (c, d), x(c) = x(d) = 0 has a nontrivial solution, where r is a real-valued continuous function on [c, d], then integral(d)(c) vertical bar r(t)vertical bar dt > alpha(alpha)/(alpha - 1)(alpha-1) (d - c)(a-1). (1) Moreover, a Lyapunov type inequality of the form integral(d)(c)vertical bar r(t)vertical bar dt > 3 alpha - 1/(d - c)(2 alpha-1) (3 alpha - 1/2 alpha - 1)(2 alpha-1/a), 1/2 < alpha <= 1, (2) is obtained for a sequential conformable BVP. Some examples are given and an application to conformable Sturm-Liouville eigenvalue problem is analyzed.
Description
Abdeljawad, Thabet/0000-0002-8889-3768; Alzabut, Prof. Dr. Jehad/0000-0002-5262-1138; Jarad, Fahd/0000-0002-3303-0623
Keywords
Lyapunov Inequality, Conformable Derivative, Green'S Function, Boundary Value Problem, Sturm-Liouville Eigenvalue Problem
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Abdeljawad, T., Alzabut, J., Jarad, F. (2017). A generalized Lyapunov-type inequality in the frame of conformable derivatives. Advance in Difference Equations, 321. http://dx.doi.org/10.1186/s13662-017-1383-z
WoS Q
Q1
Scopus Q

OpenCitations Citation Count
59
Source
Volume
Issue
Start Page
End Page
PlumX Metrics
Citations
CrossRef : 1
Scopus : 91
Captures
Mendeley Readers : 7
Google Scholar™

OpenAlex FWCI
23.60050873
Sustainable Development Goals
1
NO POVERTY

2
ZERO HUNGER

3
GOOD HEALTH AND WELL-BEING

5
GENDER EQUALITY

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES

17
PARTNERSHIPS FOR THE GOALS
