A Generalized Lyapunov-Type Inequality in the Frame of Conformable Derivatives
| dc.contributor.author | Abdeljawad, Thabet | |
| dc.contributor.author | Alzabut, Jehad | |
| dc.contributor.author | Jarad, Fahd | |
| dc.contributor.authorID | 234808 | tr_TR |
| dc.date.accessioned | 2018-09-11T13:19:15Z | |
| dc.date.accessioned | 2025-09-18T12:49:30Z | |
| dc.date.available | 2018-09-11T13:19:15Z | |
| dc.date.available | 2025-09-18T12:49:30Z | |
| dc.date.issued | 2017 | |
| dc.description | Abdeljawad, Thabet/0000-0002-8889-3768; Alzabut, Prof. Dr. Jehad/0000-0002-5262-1138; Jarad, Fahd/0000-0002-3303-0623 | en_US |
| dc.description.abstract | We prove a generalized Lyapunov-type inequality for a conformable boundary value problem (BVP) of order alpha is an element of (1, 2]. Indeed, it is shown that if the boundary value problem (T(alpha)(c)x)(t) + r(t) x(t) = 0, t is an element of (c, d), x(c) = x(d) = 0 has a nontrivial solution, where r is a real-valued continuous function on [c, d], then integral(d)(c) vertical bar r(t)vertical bar dt > alpha(alpha)/(alpha - 1)(alpha-1) (d - c)(a-1). (1) Moreover, a Lyapunov type inequality of the form integral(d)(c)vertical bar r(t)vertical bar dt > 3 alpha - 1/(d - c)(2 alpha-1) (3 alpha - 1/2 alpha - 1)(2 alpha-1/a), 1/2 < alpha <= 1, (2) is obtained for a sequential conformable BVP. Some examples are given and an application to conformable Sturm-Liouville eigenvalue problem is analyzed. | en_US |
| dc.description.publishedMonth | 10 | |
| dc.description.sponsorship | Prince Sultan University through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group [RG-DES-2017-01-17] | en_US |
| dc.description.sponsorship | The first and the second author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17. | en_US |
| dc.identifier.citation | Abdeljawad, T., Alzabut, J., Jarad, F. (2017). A generalized Lyapunov-type inequality in the frame of conformable derivatives. Advance in Difference Equations, 321. http://dx.doi.org/10.1186/s13662-017-1383-z | en_US |
| dc.identifier.doi | 10.1186/s13662-017-1383-z | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85031403925 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-017-1383-z | |
| dc.identifier.uri | https://hdl.handle.net/123456789/12360 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springeropen | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Lyapunov Inequality | en_US |
| dc.subject | Conformable Derivative | en_US |
| dc.subject | Green'S Function | en_US |
| dc.subject | Boundary Value Problem | en_US |
| dc.subject | Sturm-Liouville Eigenvalue Problem | en_US |
| dc.title | A Generalized Lyapunov-Type Inequality in the Frame of Conformable Derivatives | en_US |
| dc.title | A generalized Lyapunov-type inequality in the frame of conformable derivatives | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Abdeljawad, Thabet/0000-0002-8889-3768 | |
| gdc.author.id | Alzabut, Prof. Dr. Jehad/0000-0002-5262-1138 | |
| gdc.author.id | Jarad, Fahd/0000-0002-3303-0623 | |
| gdc.author.institutional | Abdeljawad, Thabet | |
| gdc.author.institutional | Alzabut, Jehad | |
| gdc.author.institutional | Jarad, Fahd | |
| gdc.author.scopusid | 6508051762 | |
| gdc.author.scopusid | 13105947900 | |
| gdc.author.scopusid | 15622742900 | |
| gdc.author.wosid | Jarad, Fahd/T-8333-2018 | |
| gdc.author.wosid | Abdeljawad, Thabet/T-8298-2018 | |
| gdc.author.wosid | Alzabut, Prof. Dr. Jehad/T-8075-2018 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Abdeljawad, Thabet; Alzabut, Jehad] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh, Saudi Arabia; [Jarad, Fahd] Cankaya Univ, Dept Math & Comp Sci, TR-06790 Ankara, Turkey | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2763551612 | |
| gdc.identifier.wos | WOS:000413269500002 | |
| gdc.openalex.fwci | 23.60050873 | |
| gdc.openalex.normalizedpercentile | 1.0 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 59 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 7 | |
| gdc.plumx.scopuscites | 91 | |
| gdc.scopus.citedcount | 91 | |
| gdc.wos.citedcount | 70 | |
| relation.isAuthorOfPublication | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
| relation.isAuthorOfPublication | 4dd7fc50-11d9-47ee-93c1-632016879f5e | |
| relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isAuthorOfPublication.latestForDiscovery | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |