Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The Diagnosis of Femoroacetabular Impingement Can Be Made on Pelvis Radiographs Using Deep Learning Methods

dc.contributor.author Atalar, Ebru
dc.contributor.author Ureten, Kemal
dc.contributor.author Kanatli, Ulunay
dc.contributor.author Ciceklidag, Murat
dc.contributor.author Kaya, Ibrahim
dc.contributor.author Vural, Abdurrahman
dc.contributor.author Maras, Yuksel
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-01-23T13:35:37Z
dc.date.accessioned 2025-09-18T16:07:30Z
dc.date.available 2024-01-23T13:35:37Z
dc.date.available 2025-09-18T16:07:30Z
dc.date.issued 2023
dc.description Maras, Yuksel/0000-0001-9319-0955; Kanatli, Ulunay/0000-0002-9807-9305; Ciceklidag, Murat/0000-0001-7883-9445; Vural, Abdurrahman/0000-0002-7105-7624; Kaya, Ibrahim/0000-0001-8205-6515 en_US
dc.description.abstract Objectives: The aim of this study was to evaluate diagnostic ability of deep learning models, particularly convolutional neural network models used for image classification, for femoroacetabular impingement (FAI) using hip radiographs. Materials and methods: Between January 2010 and December 2020, pelvic radiographs of a total of 516 patients (270 males, 246 females; mean age: 39.1 +/- 3.8 years; range, 20 to 78 years) with hip pain were retrospectively analyzed. Based on inclusion and exclusion criteria, a total of 888 hip radiographs (308 diagnosed with FAI and 508 considered normal) were evaluated using deep learning methods. Pre-trained VGG-16, ResNet-101, MobileNetV2, and Inceptionv3 models were used for transfer learning. Results: As assessed by performance measures such as accuracy, sensitivity, specificity, precision, F-1 score, and area under the curve (AUC), the VGG-16 model outperformed other pre-trained networks in diagnosing FAI. With the pre-trained VGG-16 model, the results showed 86.6% accuracy, 82.5% sensitivity, 89.6% specificity, 85.5% precision, 83.9% F1 score, and 0.92 AUC. Conclusion: In patients with suspected FAI, pelvic radiography is the first imaging method to be applied, and deep learning methods can help in the diagnosis of this syndrome. en_US
dc.identifier.citation Atalar, Ebru;...et.al. (2023). "The diagnosis of femoroacetabular impingement can be made on pelvis radiographs using deep learning methods", Joint Diseases and Related Surgery, Vol.34, No.2, pp.298-304. en_US
dc.identifier.doi 10.52312/jdrs.2023.996
dc.identifier.issn 2687-4792
dc.identifier.scopus 2-s2.0-85161247196
dc.identifier.uri https://doi.org/10.52312/jdrs.2023.996
dc.identifier.uri https://hdl.handle.net/20.500.12416/14760
dc.language.iso en en_US
dc.publisher Turkish Joint Diseases Foundation en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Computer-Assisted Image Processing en_US
dc.subject Deep Learning en_US
dc.subject Femoroacetabular Impingement en_US
dc.subject Hip en_US
dc.title The Diagnosis of Femoroacetabular Impingement Can Be Made on Pelvis Radiographs Using Deep Learning Methods en_US
dc.title The diagnosis of femoroacetabular impingement can be made on pelvis radiographs using deep learning methods tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Maras, Yuksel/0000-0001-9319-0955
gdc.author.id Kanatli, Ulunay/0000-0002-9807-9305
gdc.author.id Ciceklidag, Murat/0000-0001-7883-9445
gdc.author.id Vural, Abdurrahman/0000-0002-7105-7624
gdc.author.id Kaya, Ibrahim/0000-0001-8205-6515
gdc.author.scopusid 9275101400
gdc.author.scopusid 6507776586
gdc.author.scopusid 6603522335
gdc.author.scopusid 57351469900
gdc.author.scopusid 26967721900
gdc.author.scopusid 57195237902
gdc.author.wosid Atalar, Ebru/Jcd-5463-2023
gdc.author.wosid Vural, Abdurrahman/Jmb-1646-2023
gdc.author.wosid Çiçeklidağ, Murat/Jcd-5344-2023
gdc.author.wosid Kaya, Ibrahim/Hnq-7130-2023
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Atalar, Ebru] Ankara City Hosp, Dept Internal Med, Div Rheumatol, Ankara, Turkiye; [Ureten, Kemal] Cankaya Univ, Fac Engn, Dept Comp Engn, Ankara, Turkiye; [Ureten, Kemal] Ufuk Univ, Fac Med, Dept Internal Med, Div Rheumatol, Ankara, Turkiye; [Kanatli, Ulunay; Ciceklidag, Murat] Gazi Univ, Fac Med, Dept Orthoped & Traumatol, Ankara, Turkiye; [Kaya, Ibrahim] Dr Abdurrahman Yurtaslan Ankara Oncol Training & R, Dept Orthoped & Traumatol, Ankara, Turkiye; [Vural, Abdurrahman] Basaksehir Cam & Sakura City Hosp, Dept Orthoped & Traumatol, Istanbul, Turkiye; [Atalar, Ebru] Ankara Sehir Hastanesi, Ic Hastaliklari Klin, Romatol Bolumu, TR-06800 Ankara, Turkiye en_US
gdc.description.endpage 304 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 298 en_US
gdc.description.volume 34 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4378650173
gdc.identifier.pmid 37462632
gdc.identifier.trdizinid 1186078
gdc.identifier.wos WOS:000989981100001
gdc.openalex.fwci 4.53362042
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 5
gdc.plumx.mendeley 16
gdc.plumx.pubmedcites 6
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 10
gdc.wos.citedcount 8
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files