Spam Detection With Fasttext Based Features
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers Inc.
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Fasttext is a powerful word representation method that creates word representations based on vectors of character n-grams. In this work, we propose a method that utilizes fasttext features for a novel feature engineering model for the spam detection problem. In the feature engineering method, the combination of average, mean of second derivative; mean peak and standard deviation of fasttext features are computed. Finally, tf-idf features are also considered for the modeling process. The success of each feature engineering technique is measured and reported. The combination of the five feature extraction methods, tested on two spam detection datasets, yielded promising results with an accuracy of 0.978 on e-mail spam detection and an accuracy of 0.986 on sms spam classification. © 2024 IEEE.
Description
IEEE SMC; IEEE Turkiye Section
Keywords
Classification, Fasttext, Feature Extraction, Spam Detection, Support Vector Machines, Tf-Idf
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
N/A
Scopus Q
N/A
Source
2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 16 October 2024 through 18 October 2024 -- Ankara -- 204562