Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Spam Detection With Fasttext Based Features

dc.authorscopusid 35299561100
dc.authorscopusid 24333488200
dc.authorscopusid 56875440000
dc.contributor.author Karadeniz, T.
dc.contributor.author Tokdemir, G.
dc.contributor.author Maraş, H.H.
dc.contributor.other Yazılım Mühendisliği
dc.contributor.other Bilgisayar Mühendisliği
dc.date.accessioned 2025-05-13T11:56:55Z
dc.date.available 2025-05-13T11:56:55Z
dc.date.issued 2024
dc.department Çankaya University en_US
dc.department-temp Karadeniz T., Department of Software Engineering, Çankaya University, Ankara, Turkey; Tokdemir G., Department of Computer Engineering, Çankaya University, Ankara, Turkey; Maraş H.H., Department of Computer Programming, Çankaya University, Ankara, Turkey en_US
dc.description IEEE SMC; IEEE Turkiye Section en_US
dc.description.abstract Fasttext is a powerful word representation method that creates word representations based on vectors of character n-grams. In this work, we propose a method that utilizes fasttext features for a novel feature engineering model for the spam detection problem. In the feature engineering method, the combination of average, mean of second derivative; mean peak and standard deviation of fasttext features are computed. Finally, tf-idf features are also considered for the modeling process. The success of each feature engineering technique is measured and reported. The combination of the five feature extraction methods, tested on two spam detection datasets, yielded promising results with an accuracy of 0.978 on e-mail spam detection and an accuracy of 0.986 on sms spam classification. © 2024 IEEE. en_US
dc.identifier.doi 10.1109/ASYU62119.2024.10757046
dc.identifier.isbn 9798350379433
dc.identifier.scopus 2-s2.0-85213302201
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1109/ASYU62119.2024.10757046
dc.identifier.uri https://hdl.handle.net/20.500.12416/9760
dc.identifier.wosquality N/A
dc.institutionauthor Karadeniz, Talha
dc.institutionauthor Tokdemir, Gül
dc.institutionauthor Maraş, Hadi Hakan
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 16 October 2024 through 18 October 2024 -- Ankara -- 204562 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Classification en_US
dc.subject Fasttext en_US
dc.subject Feature Extraction en_US
dc.subject Spam Detection en_US
dc.subject Support Vector Machines en_US
dc.subject Tf-Idf en_US
dc.title Spam Detection With Fasttext Based Features en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 7269fd52-d99c-41aa-863d-cb899d6b3ab7
relation.isAuthorOfPublication a10f79e3-acee-4bb2-82f2-548c5fb0d165
relation.isAuthorOfPublication 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication.latestForDiscovery 7269fd52-d99c-41aa-863d-cb899d6b3ab7
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files