Filter Design for Small Target Detection on Infrared Imagery Using Normalized-Cross Layer
| dc.contributor.author | Demir, H. Seckin | |
| dc.contributor.author | Akagunduz, Erdem | |
| dc.contributor.authorID | 233834 | tr_TR |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2021-06-11T10:36:07Z | |
| dc.date.accessioned | 2025-09-18T14:10:29Z | |
| dc.date.available | 2021-06-11T10:36:07Z | |
| dc.date.available | 2025-09-18T14:10:29Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | In this paper, we introduce a machine learning approach to the problem of infrared small target detection filter design. For this purpose, similar to a convolutional layer of a neural network, the normalized-cross-correlational (NCC) layer, which we utilize for designing a target detection/recognition filter bank, is proposed. By employing the NCC layer in a neural network structure, we introduce a framework, in which supervised training is used to calculate the optimal filter shape and the optimum number of filters required for a specific target detection/recognition task on infrared images. We also propose the mean-absolute-deviation NCC (MAD-NCC) layer, an efficient implementation of the proposed NCC layer, designed especially for FPGA systems, in which square root operations are avoided for real-time computation. As a case study we work on dim-target detection on midwave infrared imagery and obtain the filters that can discriminate a dim target from various types of background clutter, specific to our operational concept. | en_US |
| dc.identifier.citation | Demir, H. Seçkin; Akagündüz, Erdem (2020). "Filter design for small target detection on infrared imagery using normalized-cross-correlation layer", Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 28, no. 1, pp. 302-317. | en_US |
| dc.identifier.doi | 10.3906/elk-1807-287 | |
| dc.identifier.issn | 1300-0632 | |
| dc.identifier.issn | 1303-6203 | |
| dc.identifier.scopus | 2-s2.0-85079838212 | |
| dc.identifier.uri | https://doi.org/10.3906/elk-1807-287 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/13705 | |
| dc.language.iso | en | en_US |
| dc.publisher | Tubitak Scientific & Technological Research Council Turkey | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Small Target Detection | en_US |
| dc.subject | Filter Design | en_US |
| dc.subject | Normalized-Cross-Correlation | en_US |
| dc.subject | Convolutional Neural Networks | en_US |
| dc.title | Filter Design for Small Target Detection on Infrared Imagery Using Normalized-Cross Layer | en_US |
| dc.title | Filter design for small target detection on infrared imagery using normalized-cross-correlation layer | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 56903001500 | |
| gdc.author.scopusid | 8331988500 | |
| gdc.author.wosid | Akagündüz, Erdem/W-1788-2018 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Demir, H. Seckin] ASELSAN Inc, MGEO, Dept Electroopt Syst Design, Yenimahalle Ankara, Turkey; [Akagunduz, Erdem] Cankaya Univ, Dept Elect & Elect Engn, Etimesgut, Turkey | en_US |
| gdc.description.endpage | 317 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 302 | en_US |
| gdc.description.volume | 28 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q4 | |
| gdc.identifier.openalex | W3004741862 | |
| gdc.identifier.trdizinid | 334646 | |
| gdc.identifier.wos | WOS:000510459900022 | |
| gdc.openalex.fwci | 0.63383368 | |
| gdc.openalex.normalizedpercentile | 0.81 | |
| gdc.opencitations.count | 3 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.mendeley | 9 | |
| gdc.plumx.patentfamcites | 1 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.scopus.citedcount | 3 | |
| gdc.wos.citedcount | 3 | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 0b9123e4-4136-493b-9ffd-be856af2cdb1 |