Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Filter Design for Small Target Detection on Infrared Imagery Using Normalized-Cross Layer

dc.contributor.author Demir, H. Seckin
dc.contributor.author Akagunduz, Erdem
dc.contributor.authorID 233834 tr_TR
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2021-06-11T10:36:07Z
dc.date.accessioned 2025-09-18T14:10:29Z
dc.date.available 2021-06-11T10:36:07Z
dc.date.available 2025-09-18T14:10:29Z
dc.date.issued 2020
dc.description.abstract In this paper, we introduce a machine learning approach to the problem of infrared small target detection filter design. For this purpose, similar to a convolutional layer of a neural network, the normalized-cross-correlational (NCC) layer, which we utilize for designing a target detection/recognition filter bank, is proposed. By employing the NCC layer in a neural network structure, we introduce a framework, in which supervised training is used to calculate the optimal filter shape and the optimum number of filters required for a specific target detection/recognition task on infrared images. We also propose the mean-absolute-deviation NCC (MAD-NCC) layer, an efficient implementation of the proposed NCC layer, designed especially for FPGA systems, in which square root operations are avoided for real-time computation. As a case study we work on dim-target detection on midwave infrared imagery and obtain the filters that can discriminate a dim target from various types of background clutter, specific to our operational concept. en_US
dc.identifier.citation Demir, H. Seçkin; Akagündüz, Erdem (2020). "Filter design for small target detection on infrared imagery using normalized-cross-correlation layer", Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 28, no. 1, pp. 302-317. en_US
dc.identifier.doi 10.3906/elk-1807-287
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.scopus 2-s2.0-85079838212
dc.identifier.uri https://doi.org/10.3906/elk-1807-287
dc.identifier.uri https://hdl.handle.net/20.500.12416/13705
dc.language.iso en en_US
dc.publisher Tubitak Scientific & Technological Research Council Turkey en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Small Target Detection en_US
dc.subject Filter Design en_US
dc.subject Normalized-Cross-Correlation en_US
dc.subject Convolutional Neural Networks en_US
dc.title Filter Design for Small Target Detection on Infrared Imagery Using Normalized-Cross Layer en_US
dc.title Filter design for small target detection on infrared imagery using normalized-cross-correlation layer tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 56903001500
gdc.author.scopusid 8331988500
gdc.author.wosid Akagündüz, Erdem/W-1788-2018
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Demir, H. Seckin] ASELSAN Inc, MGEO, Dept Electroopt Syst Design, Yenimahalle Ankara, Turkey; [Akagunduz, Erdem] Cankaya Univ, Dept Elect & Elect Engn, Etimesgut, Turkey en_US
gdc.description.endpage 317 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 302 en_US
gdc.description.volume 28 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W3004741862
gdc.identifier.trdizinid 334646
gdc.identifier.wos WOS:000510459900022
gdc.openalex.fwci 0.63383368
gdc.openalex.normalizedpercentile 0.81
gdc.opencitations.count 3
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 9
gdc.plumx.patentfamcites 1
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
gdc.wos.citedcount 3
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files