Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The diagnosis of femoroacetabular impingement can be made on pelvis radiographs using deep learning methods

dc.authoridMaras, Yuksel/0000-0001-9319-0955
dc.authoridKanatli, Ulunay/0000-0002-9807-9305
dc.authoridCiceklidag, Murat/0000-0001-7883-9445
dc.authoridVural, Abdurrahman/0000-0002-7105-7624
dc.authoridKaya, Ibrahim/0000-0001-8205-6515
dc.authorscopusid9275101400
dc.authorscopusid6507776586
dc.authorscopusid6603522335
dc.authorscopusid57351469900
dc.authorscopusid26967721900
dc.authorscopusid57195237902
dc.authorscopusid57195237902
dc.authorwosidAtalar, Ebru/Jcd-5463-2023
dc.authorwosidVural, Abdurrahman/Jmb-1646-2023
dc.authorwosidÇiçeklidağ, Murat/Jcd-5344-2023
dc.authorwosidKaya, Ibrahim/Hnq-7130-2023
dc.contributor.authorAtalar, Ebru
dc.contributor.authorUreten, Kemal
dc.contributor.authorKanatli, Ulunay
dc.contributor.authorCiceklidag, Murat
dc.contributor.authorKaya, Ibrahim
dc.contributor.authorVural, Abdurrahman
dc.contributor.authorMaras, Yuksel
dc.date.accessioned2024-01-23T13:35:37Z
dc.date.available2024-01-23T13:35:37Z
dc.date.issued2023
dc.departmentÇankaya Universityen_US
dc.department-temp[Atalar, Ebru] Ankara City Hosp, Dept Internal Med, Div Rheumatol, Ankara, Turkiye; [Ureten, Kemal] Cankaya Univ, Fac Engn, Dept Comp Engn, Ankara, Turkiye; [Ureten, Kemal] Ufuk Univ, Fac Med, Dept Internal Med, Div Rheumatol, Ankara, Turkiye; [Kanatli, Ulunay; Ciceklidag, Murat] Gazi Univ, Fac Med, Dept Orthoped & Traumatol, Ankara, Turkiye; [Kaya, Ibrahim] Dr Abdurrahman Yurtaslan Ankara Oncol Training & R, Dept Orthoped & Traumatol, Ankara, Turkiye; [Vural, Abdurrahman] Basaksehir Cam & Sakura City Hosp, Dept Orthoped & Traumatol, Istanbul, Turkiye; [Atalar, Ebru] Ankara Sehir Hastanesi, Ic Hastaliklari Klin, Romatol Bolumu, TR-06800 Ankara, Turkiyeen_US
dc.descriptionMaras, Yuksel/0000-0001-9319-0955; Kanatli, Ulunay/0000-0002-9807-9305; Ciceklidag, Murat/0000-0001-7883-9445; Vural, Abdurrahman/0000-0002-7105-7624; Kaya, Ibrahim/0000-0001-8205-6515en_US
dc.description.abstractObjectives: The aim of this study was to evaluate diagnostic ability of deep learning models, particularly convolutional neural network models used for image classification, for femoroacetabular impingement (FAI) using hip radiographs. Materials and methods: Between January 2010 and December 2020, pelvic radiographs of a total of 516 patients (270 males, 246 females; mean age: 39.1 +/- 3.8 years; range, 20 to 78 years) with hip pain were retrospectively analyzed. Based on inclusion and exclusion criteria, a total of 888 hip radiographs (308 diagnosed with FAI and 508 considered normal) were evaluated using deep learning methods. Pre-trained VGG-16, ResNet-101, MobileNetV2, and Inceptionv3 models were used for transfer learning. Results: As assessed by performance measures such as accuracy, sensitivity, specificity, precision, F-1 score, and area under the curve (AUC), the VGG-16 model outperformed other pre-trained networks in diagnosing FAI. With the pre-trained VGG-16 model, the results showed 86.6% accuracy, 82.5% sensitivity, 89.6% specificity, 85.5% precision, 83.9% F1 score, and 0.92 AUC. Conclusion: In patients with suspected FAI, pelvic radiography is the first imaging method to be applied, and deep learning methods can help in the diagnosis of this syndrome.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationAtalar, Ebru;...et.al. (2023). "The diagnosis of femoroacetabular impingement can be made on pelvis radiographs using deep learning methods", Joint Diseases and Related Surgery, Vol.34, No.2, pp.298-304.en_US
dc.identifier.doi10.52312/jdrs.2023.996
dc.identifier.endpage304en_US
dc.identifier.issn2687-4792
dc.identifier.issue2en_US
dc.identifier.pmid37462632
dc.identifier.scopus2-s2.0-85161247196
dc.identifier.scopusqualityQ3
dc.identifier.startpage298en_US
dc.identifier.trdizinid1186078
dc.identifier.urihttps://doi.org/10.52312/jdrs.2023.996
dc.identifier.volume34en_US
dc.identifier.wosWOS:000989981100001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTurkish Joint Diseases Foundationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectComputer-Assisted Image Processingen_US
dc.subjectDeep Learningen_US
dc.subjectFemoroacetabular Impingementen_US
dc.subjectHipen_US
dc.titleThe diagnosis of femoroacetabular impingement can be made on pelvis radiographs using deep learning methodstr_TR
dc.titleThe Diagnosis of Femoroacetabular Impingement Can Be Made on Pelvis Radiographs Using Deep Learning Methodsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: