Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Deep Combination of Stylometry Features in Forensic Authorship Analysis

dc.contributor.author Sezer, Ebru Akcapinar
dc.contributor.author Canbay, Pelin
dc.contributor.author Sever, Hayri
dc.contributor.authorID 11916 tr_TR
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2021-06-17T11:50:57Z
dc.date.accessioned 2025-09-18T15:44:05Z
dc.date.available 2021-06-17T11:50:57Z
dc.date.available 2025-09-18T15:44:05Z
dc.date.issued 2020
dc.description.abstract Authorship Analysis (AA) in forensic is a process aim to extract information about an author from his/her writings.Forensic AA is needed for detection characteristics of anonymous authors to make better the security of digital media userswho are exposed to disturbing entries such as threats or harassment emails. To analyze whether two anonymous short textswere written by the same author, we propose a combination of stylometry features from different categories in differentprogress. In the majority of the previous AA studies, the stylometric features from different categories are concatenated in apreprocess. In these studies, during the learning process, no category-specific operations are performed; all categories used areevaluated equally. On the other hand, the proposed approach has a separate learning process for each feature category due totheir qualitative and quantitative characteristics and combines these processes at the decision phase by using a Combination ofDeep Neural Networks (C-DNN). To evaluate the Authorship Verification (AV) performance of the proposed approach, wedesigned and implemented a problem-specific Deep Neural Network (DNN) for each stylometry category we used.Experiments were conducted on two English public datasets. The results show that the proposed approach significantlyimproves the generalization ability and robustness of the solutions, and also have better accuracy than the single DNNs. en_US
dc.identifier.citation Canbay, Pelin; Sezer, Ebru; Sever, Hayri (2020). "Deep Combination of Stylometry Features in Forensic Authorship Analysis", International Journal of Information Security Science, Vol. 9, no. 3, pp. 154-163. en_US
dc.identifier.issn 2147-0030
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/378999/deep-combination-of-stylometry-features-in-forensic-authorship-analysis
dc.identifier.uri https://hdl.handle.net/20.500.12416/14148
dc.language.iso en en_US
dc.relation.ispartof International Journal of Information Security Science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Adli Tıp en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Yazılım Mühendisliği en_US
dc.title Deep Combination of Stylometry Features in Forensic Authorship Analysis en_US
dc.title Deep Combination of Stylometry Features in Forensic Authorship Analysis tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Sever, Hayri
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Hacettepe Üniversitesi,Kahramanmaraş Sütçü İmam Üniversitesi,Çankaya Üniversitesi en_US
gdc.description.endpage 163 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 154 en_US
gdc.description.volume 9 en_US
gdc.identifier.trdizinid 378999
relation.isAuthorOfPublication a26d16c1-fa24-4ceb-b2c8-8517c96e2534
relation.isAuthorOfPublication.latestForDiscovery a26d16c1-fa24-4ceb-b2c8-8517c96e2534
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files