Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Application of Artificial Intelligence in Early–Stage Diagnosis of Sepsis

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Association for Computing Machinery

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Bilgisayar Mühendisliği
Bölümümüzün temel amacı iş yaşamındaki kapsamlı problemlere profesyonel sorumluluk ve etik bilinciyle, bireysel ve takım içinde, teknolojik değişimlere hızla uyum sağlayarak çözüm geliştirebilen ve uygulayabilen, bilgisayar bilimleri ve mühendisliği alanında akademik ve ileri düzey araştırma ve geliştirme yapabilen, yenilikçi ve girişimci bir vizyonla ulusal ve uluslararası düzeyde yeni teknolojilerin geliştirilmesine ve mevcutların iyileştirilmesine katkı verebilen, mesleklerinde saygı duyulan mezunlar yetiştirmeyi hedeflemektedir.

Journal Issue

Events

Abstract

Patient care is a critical task, which requires a lot of effort. Medical practitioners face many challenges, especially during diagnosing different diseases. Sepsis is one of the riskiest diseases, which proves to be lethal for Intensive Care Unit (ICU) patients. World Health Organization (WHO) has declared it a major cause of death worldwide. Early-stage diagnosis of sepsis can help in terminating it in the start. But unfortunately, medical practitioners encounter hitches in the early-stage diagnosis of sepsis. The study used SOFA (Sequential Organ Failure Assessment) for measuring the severity of sepsis in patients. The study employs artificial intelligence techniques such as Multilayer Perceptron (MLP) and Random Forest (RF) to diagnose early-stage of sepsis. The study compared the performance of MLP (connected and non-connected) and Random Forest (connected and non-connected) algorithms. The results indicate that for both of the algorithms, the connected method yielded better results than the non-connected method. Further, it was found that RF both connected and non-connected algorithms yielded better results than MLP algorithms and the Random Forest connected algorithm yielded highly accurate results for diagnosing early-stage sepsis in the 3rd hour. © 2022 ACM.

Description

Keywords

Connected Models, Early-Stage Diagnosis, Mlp, Random Forest, Sepsis

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Par, Öznur Esra; Akçapınar Sezer, Ebru; Sever, Hayri. "Application of Artificial Intelligence in Early–Stage Diagnosis of Sepsis", AICCC '22: Proceedings of the 2022 5th Artificial Intelligence and Cloud Computing Conference, pp. 196-206, 2023.

WoS Q

N/A

Scopus Q

N/A

Source

ACM International Conference Proceeding Series -- 5th Artificial Intelligence and Cloud Computing Conference, AICCC 2022 -- 17 December 2022 through 19 December 2022 -- Osaka -- 188092

Volume

Issue

Start Page

196

End Page

206