Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Surface modification by 1 keV ion impact: molecular dynamics study of an Ar+-Ni(100) collision system

No Thumbnail Available

Date

2008

Journal Title

Journal ISSN

Volume Title

Publisher

Iop Publishing Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Ortak Dersler Bölümü
Ortak Dersler Bölümü’nün amacı öğrencilerimizin analitik düşünme yeteneğini geliştirmek, bazı doğa kanunlarını anlayabilmelerini sağlamak, eğitim, bilim, sanat, tarih ve edebiyat gibi alanlarda öğrencilerimizin kendilerini geliştirmesine imkan sağlamaktır.

Journal Issue

Events

Abstract

An Ar+-Ni(1 0 0) collision system at 1 keV impact energy was investigated by using realistic isoenergetic molecular dynamics (MD) simulations. The sputtering process upon Ar+ ion impact and damage to the Ni(1 0 0) surface are examined in detail. Studying of high bombarding energy regions leads to the necessity of larger and thick enough slabs, otherwise incoming ions can easily pass through the slab; as a result, investigated physical properties may not be revealed. In addition the simulation time should be long enough to observe and to calculate a reliable macroscopic property such as sputtering yield that is addressed in this study. In order to preserve the total energy in the simulation at this collision energy a small time-step (0.1 fs) is used. We have made use of our developed linear scaling parallel MD program to overcome these demands. The Ni(1 0 0) slab is formed by 63700 atoms (122 angstrom x 122 angstrom x 44 angstrom) and the total observation time for each collision event is about 2.25 ps. Several properties such as penetration depths, angular and energy distributions of the reflected Ar and sputtered Ni atoms as well as dissociation time, embedded, scattering, sputtering patterns and geometries of the sputtered clusters are also reported, and the calculated sputtering yield is found to be in good agreement with the available experimental results.

Description

Ozdogan, Cem/0000-0002-9644-0013; Atis, Murat/0000-0003-4429-6897

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Özdoğan, C., Atiş, M., Güvenç, Z.B. (2008). Surface modification by 1 keV ion impact: molecular dynamics study of an Ar+-Ni(100) collision system. Modelling and Simulation in Materials Science and Engineering, 16(3). http://dx.doi.org/10.1088/0965-0393/16/3/035003

WoS Q

Q3

Scopus Q

Q3

Source

Volume

16

Issue

3

Start Page

End Page