Adaptive Decision Fusion Based Framework for Short-Term Wind Speed and Turbulence Intensity Forecasting: Case Study for North West of Turkey
No Thumbnail Available
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
:In this paper, an online learning framework called adaptive decision fusion (ADF) is employed for short-term wind speed and turbulence intensity forecasting by use of wind speed data for each season for the city of ˙Izmit, located in the northwest of Turkey. Fixed-weight (FW) linear combination is derived and used for comparison with ADF. Wind speeds and turbulence intensities are predicted from the existing wind speed data and computed turbulence intensities, respectively, using the ADF and FW methods. Simulations are carried out for each season and the results are tested on mean absolute percentage error criterion. It is shown that the proposed model captured the system dynamic behavior and made accurate predictions based on the seasonal wind speed characteristics of the site. The procedure described here can be used to estimate the local velocity and turbulence intensity in a wind power plant during a storm.
Description
ORCID
Keywords
Mühendislik, Elektrik Ve Elektronik
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Dinckal, Cigdem; Toreyin, Bechet Ugur; Kucukali, Serhat (2017). Adaptive decision fusion based framework for short-term wind speed and turbulence intensity forecasting: case study for North West of Turkey, Turkish Journal Of Electrical Engineering And Computer Sciences, 25(4), 2770-2783.
WoS Q
Q4
Scopus Q
Q3
Source
Turkish Journal of Electrical Engineering and Computer Sciences
Volume
25
Issue
4
Start Page
2770
End Page
2783