Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Reporting and Analyzing Alternative Clustering Solutions by Employing Multi-Objective Genetic Algorithm and Conducting Experiments on Cancer Data

dc.contributor.author Peng, Peter
dc.contributor.author Addam, Omer
dc.contributor.author Ozyer, Sibel T.
dc.contributor.author Elzohbi, Mohamad
dc.contributor.author Elhajj, Ahmad
dc.contributor.author Gao, Shang
dc.contributor.author Alhajj, Reda
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-06-02T07:01:22Z
dc.date.accessioned 2025-09-18T14:10:46Z
dc.date.available 2020-06-02T07:01:22Z
dc.date.available 2025-09-18T14:10:46Z
dc.date.issued 2014
dc.description Kaya, Mehmet/0000-0003-2995-8282 en_US
dc.description.abstract Clustering is an essential research problem which has received considerable attention in the research community for decades. It is a challenge because there is no unique solution that fits all problems and satisfies all applications. We target to get the most appropriate clustering solution for a given application domain. In other words, clustering algorithms in general need prior specification of the number of clusters, and this is hard even for domain experts to estimate especially in a dynamic environment where the data changes and/or become available incrementally. In this paper, we described and analyze the effectiveness of a robust clustering algorithm which integrates multi-objective genetic algorithm into a framework capable of producing alternative clustering solutions; it is called Multi-objective K-Means Genetic Algorithm (MOKGA). We investigate its application for clustering a variety of datasets, including microarray gene expression data. The reported results are promising. Though we concentrate on gene expression and mostly cancer data, the proposed approach is general enough and works equally to cluster other datasets as demonstrated by the two datasets Iris and Ruspini. After running MOKGA, a pareto-optimal front is obtained, and gives the optimal number of clusters as a solution set. The achieved clustering results are then analyzed and validated under several cluster validity techniques proposed in the literature. As a result, the optimal clusters are ranked for each validity index. We apply majority voting to decide on the most appropriate set of validity indexes applicable to every tested dataset. The proposed clustering approach is tested by conducting experiments using seven well cited benchmark data sets. The obtained results are compared with those reported in the literature to demonstrate the applicability and effectiveness of the proposed approach. (C) 2013 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 1
dc.description.sponsorship Scientific and Technical Research Council of Turkey [Tubitak EEEAG 109E241]; TUBITAK en_US
dc.description.sponsorship This paper is part of the project sponsored by Scientific and Technical Research Council of Turkey (Tubitak EEEAG 109E241). Tansel Ozyer would like to thank TUBITAK for their support. en_US
dc.identifier.citation Peng, Peter...et.al., "Reporting and analyzing alternative clustering solutions by employing multi-objective genetic algorithm and conducting experiments on cancer data" Knowledge-Based Systems, Vol.56, pp.108-122, (2014). en_US
dc.identifier.doi 10.1016/j.knosys.2013.11.003
dc.identifier.issn 0950-7051
dc.identifier.issn 1872-7409
dc.identifier.scopus 2-s2.0-84892432312
dc.identifier.uri https://doi.org/10.1016/j.knosys.2013.11.003
dc.identifier.uri https://hdl.handle.net/20.500.12416/13787
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Clustering en_US
dc.subject Genetic Algorithm en_US
dc.subject Gene Expression Data en_US
dc.subject Multi-Objective Optimization en_US
dc.subject Cluster Validity Analysis en_US
dc.title Reporting and Analyzing Alternative Clustering Solutions by Employing Multi-Objective Genetic Algorithm and Conducting Experiments on Cancer Data en_US
dc.title Reporting and analyzing alternative clustering solutions by employing multi-objective genetic algorithm and conducting experiments on cancer data tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kaya, Mehmet/0000-0003-2995-8282
gdc.author.institutional Özyer, Sibel
gdc.author.scopusid 50862021900
gdc.author.scopusid 55317858400
gdc.author.scopusid 55516073700
gdc.author.scopusid 35088652200
gdc.author.scopusid 55354264900
gdc.author.scopusid 56658914900
gdc.author.scopusid 7005166720
gdc.author.wosid Lu, Yuting/Iis-2826-2023
gdc.author.wosid Kaya, Mehmet/D-4459-2013
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Peng, Peter; Addam, Omer; Elzohbi, Mohamad; Gao, Shang; Liu, Yimin; Rokne, Jon; Alhajj, Reda] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada; [Ozyer, Sibel T.] Cankaya Univ, Dept Comp Engn, Ankara, Turkey; [Elhajj, Ahmad; Ridley, Mick] Univ Bradford, Dept Comp, Bradford BD7 1DP, W Yorkshire, England; [Ozyer, Tansel] TOBB Univ, Dept Comp Engn, Ankara, Turkey; [Kaya, Mehmet] Firat Univ, Dept Comp Engn, TR-23119 Elazig, Turkey; [Alhajj, Reda] Global Univ, Dept Comp Sci, Beirut, Lebanon en_US
gdc.description.endpage 122 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 108 en_US
gdc.description.volume 56 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W1972050343
gdc.identifier.wos WOS:000331160200010
gdc.openalex.fwci 1.84325639
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 24
gdc.plumx.crossrefcites 24
gdc.plumx.mendeley 32
gdc.plumx.scopuscites 27
gdc.scopus.citedcount 27
gdc.wos.citedcount 21
relation.isAuthorOfPublication 72206a7a-f3ae-483e-bf6d-8c3dbe3ffa9c
relation.isAuthorOfPublication.latestForDiscovery 72206a7a-f3ae-483e-bf6d-8c3dbe3ffa9c
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files