Browsing by Author "Celebioglu, Kutay"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Article Citation - WoS: 2Citation - Scopus: 2Critical decision making for rehabilitation of hydroelectric power plants(Taylor & Francis inc, 2023) Celebioglu, Kutay; Ayli, Ece; Ulucak, Oguzhan; Aradag, Selin; Westerman, Jerry; 265836Due to their diminishing performance, reliability, and maintenance requirements, there has been a rise in the demand for the restoration and renovation of old hydroelectric power facilities in recent decades. Prior to initiating a rehabilitation program, it is crucial to establish a comprehensive understanding of the power plant's current state. Failure to do so may result in unnecessary expenses with minimal or no improvements. This article presents a systematic rehabilitation methodology specifically tailored for Francis turbines, encompassing a methodological approach for condition assessment, performance testing, and evaluation of rehabilitation potential using site measurements and CFD analysis, and a comprehensive decision-making process. To evaluate the off-design performance of the turbines, a series of simulations are conducted for 40 different flow rate and head combinations, generating a hill chart for comprehensive evaluation. Various parameters that significantly impact the critical decision-making process are thoroughly investigated. The validity of the reverse engineering-based CFD methodology is verified, demonstrating a minor difference of 0.41% and 0.40% in efficiency and power, respectively, between the RE runner and actual runner CFD results. The optimal efficiency point is determined at a flow rate of 35.035 m(3)/s, achieving an efficiency of 94.07%, while the design point exhibits an efficiency of 93.27% with a flow rate of 38.6 m(3)/s. Cavitation is observed in the turbine runner, occupying 27% of the blade suction area at 110% loading. The developed rehabilitation methodology equips decision-makers with essential information to prioritize key issues and determine whether a full-scale or component-based rehabilitation program is necessary. By following this systematic approach, hydroelectric power plants can efficiently address the challenges associated with aging Francis turbines and optimize their rehabilitation efforts.Article Citation - WoS: 0Citation - Scopus: 0Enhancing Efficiency of an Old Hydropower Plant Turbine Through a Mutual Runner Design and Component Optimization(Sage Publications Ltd, 2025) Seydim, Sila; Yildirim, Gozde; Ulucak, Oguzhan; Buyuksolak, Fevzi; Ejder, Beril; Kantar, Ece Nil; Celebioglu, KutayThis paper presents a systematic approach to the rehabilitation process of Sar & imath;yar HEPP, a hydroelectric power plant that has been operational for more than 50 years. Units 1 and 2 (U1-U2) were originally designed with a head of 93 m and a turbine power of 48.5 MW, while Units 3 and 4 (U3-U4) were designed with a lower head of 76.5 m but the same turbine power of 48.5 MW. A methodology combining reverse engineering and CFD analysis is developed to identify and evaluate the critical parameters that have an impact on the existing turbine performance. A hybrid design is proposed to replace the existing two different types of turbines, which reduces manufacturing costs and design time. The performance of the new hybrid design is evaluated in detail with CFD analysis. For both existing and hybrid design, steady and unsteady analyses are performed. For all of the situations hill charts are obtained and the comparison of the old and new hybrid design is discussed in detail. The results show that the new design has improved the efficiency of the turbine and the power plant, resulting in a 14.2% efficiency increase in U1-U2 and a 21% system efficiency improvement in U3-U4. This study provides a guide to designers and practitioners for the rehabilitation of hydroelectric power plants.Article Citation - WoS: 2Citation - Scopus: 1Exploring the potential of artificial intelligence tools in enhancing the performance of an inline pipe turbine(Sage Publications Ltd, 2024) Celebioglu, Kutay; Ayli, Ece; Cetinturk, Huseyin; Tascioglu, Yigit; Aradag, Selin; 265836In this study, investigations were conducted using computational fluid dynamics (CFD) to assess the applicability of a Francis-type water turbine within a pipe. The objective of the study is to determine the feasibility of implementing a turbine within a pipe and enhance its performance values within the operating range. The turbine within the pipe occupies significantly less space in hydroelectric power plants since a spiral casing is not used to distribute the flow to stationary vanes. Consequently, production and assembly costs can be reduced. Hence, there is a broad scope for application, particularly in small and medium-scale hydroelectric power plants. According to the results, the efficiency value increases on average by approximately 1.5% compared to conventional design, and it operates with higher efficiencies over a wider flow rate range. In the second part of the study, machine learning was employed for the efficiency prediction of an inline-type turbine. An appropriate Artificial Neural Network (ANN) architecture was initially obtained, with the Bayesian Regularization training algorithm proving to be the best approach for this type of problem. When the suitable ANN architecture was utilized, the prediction was found to be in good agreement with CFD, with an root mean squared error value of 0.194. An R2 value of 0.99631 was achieved with the appropriate ANN architecture.Article Citation - WoS: 0Citation - Scopus: 0An Innovative Showcase of Similarity Methods for Accelerated Turbine Design Processes and Cost-Effective Solutions(Taylor & Francis Ltd, 2025) Kantar, Ece Nil; Ayli, Ece; Celebioglu, KutayThis study aims to design a containerized Francis-type turbine for installation on drinking water pipelines equipped with pressure-reducing equipment, enabling energy recovery from untapped hydraulic resources. The turbine, designed to operate unmanned and housed within a container, represents an innovative approach to harnessing residual energy in drinking water pipelines. The research methodology leverages similarity laws derived from a previously developed high-efficiency turbine facility as a foundation for the preliminary design. This approach diverges from conventional turbine design methods, offering significant time and cost efficiencies. It should be noted that similarity laws were used only for the preliminary dimensioning of the scale turbine. Following this initial design, design optimizations were carried out based on CFD, focusing on components such as the runner, to enhance performance and achieve the required power output without cavitation at the specified flow rate and head. The results demonstrate that the application of similarity laws expedites the design process while maintaining high efficiency, effectively addressing the unique constraints of the operational environment. Additionally, the study provides a comprehensive analysis of the advantages and limitations of employing similarity in turbine design. In conclusion, this research not only exemplifies a novel turbine design methodology that ensures operational similarity but also serves as a practical guide for reducing costs and design timelines in small hydropower applications.This now clearly states that similarity was used for the preliminary dimensioning, followed by optimization based on CFD.Article Citation - WoS: 2Citation - Scopus: 2Mitigating Cavitation Effects on Francis Turbine Performance: a Two-Phase Flow Analysis(Pergamon-elsevier Science Ltd, 2025) Altintas, Burak; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; Tascioglu, YigitDue to their ability to operate over a wide range of flow rates and generate high power, Francis turbines are the most widely used of hydroturbine type. Hydraulic turbines, are designed for specific flow and head conditions tailored to site conditions. However, Francis turbines can also be operated outside of design conditions due to varying flow and head values. Operation outside of design conditions can lead to cavitation. In this study, singlephase steady-state an alyses were conducted initially to examine cavitation in detail, followed by two-phase transient analyses. The results obtained from these analyses were compared to determine the cavitation characteristics of the designed turbine. The steady-state simulation results indicate the occurrence of cavitation, including traveling bubble and draft tube cavitation, under overload operating conditions. However, these cavitation characteristics are not observed in the two-phase transient simulation results under the same operating conditions. Additionally, the turbine efficiency is predicted to be higher in the transient simulation results. This is attributed to the frozen rotor interface used in the steady-state simulations, which over predicts flow irregularities. The reduced flow irregularities in the transient results have resulted in lower cavitation and losses, leading to higher predicted turbine efficiency.Article Rehabilitation of Francis Turbines of Power Plants With Computational Methods(2018) Aylı, Ece; Celebioglu, Kutay; Altıntas, Burak; Aradag, SelinRehabilitation of existing hydroelectric power plants (HEPP) by redesigning the hydraulicturbines is usually more elaborate than designing a tailor-made turbine for a new plant.Some of the parts are buried and the space is limited with the size of the old turbine; therefore,this increases the number of constraints imposed on the design. This article presents aComputational Fluid Dynamics (CFD) based rehabilitation procedure involving the stateof the art redesign of the turbine of a hydroelectric power plant for better performance atdesign and off-design conditions of several head and flow rates. Runner and guide vanes ofthe Francis turbine are designed per the design head and flow rates available for the turbineat the site. The simulations for the designed parts are performed both separately and usingall turbine parts as full turbine analyses. Both the design and off-design conditions aresimulated for the newly designed and existing turbines for comparison purposes. Cavitationperformance of the new design is also determined. The proposed methodology is applicableto any Francis type turbine and any HEPP that needs rehabilitation.