İnşaat Mühendisliği Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12416/17
Browse
Browsing İnşaat Mühendisliği Bölümü by Journal "Case Studies in Construction Materials"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: Almusawi, Ali; Shoman, Sarmad; Lupanov, Andrei P.;...et.al. (2023). "Assessment of the effectiveness and the initial cost efficiency of hot recycled asphalt using polymer modified bitumen", Case Studies in Construction Materials; Vol.18Assessment of the effectiveness and the initial cost efficiency of hot recycled asphalt using polymer modified bitumen(2023) Almusawi, Ali; Shoman, Sarmad; Lupanov, Andrei P.The drastic increase in environmental concerns and increasing costs of road construction materials necessitate evaluating some alternative solutions. One of the most suitable alternatives is recycling old asphalt pavement to produce reclaimed asphalt pavement (RAP). The RAP materials have been commonly combined with asphalt mixtures during pavement construction. Incorporating RAP material should demonstrate an equivalent or better performance than conventional asphalt mixtures. Conversely, the inclusion of RAP mainly needs to improve performance compared to conventional asphalt mixtures. The key issue of using RAP is to restore the loss properties of aged materials and normally asphalt Agent Rejuvenator (ARA) was used. Also, adding polymers with RAP into the asphalt mixture becomes necessary to obtain the required performance. This study investigated the RAP effects of elastomeric polymer on the performance of the asphalt mixture following Russian standards (GOST). The impact of using PMB with RAP material on the asphalt mixture's performance was primarily considered by employing tests that can reveal the adhesion property. Additionally, the performance of the pavement was evaluated in terms of strength and low-temperature cracking. For this purpose, numerous test methods were implemented to appraise the asphalt performance, such as compressive strength, moisture susceptibility, shear resistance, tensile strength, porosity of the mineral particles, and residual porosity. The results indicated that the overall performance of the asphalt mixtures prepared with RAP and combined with polymer depicted a better performance. Moreover, the initial construction cost for each asphalt composition was estimated and compared. The utilization of PMB increased the cost of the asphalt mixture. However, such an increase in the cost would lead to an increase in the overall performance, especially for RAP mixtures.Article Citation Count: Almusawi, Ali;...et.al. (2022). "Economic and environmental impacts of utilizing lower production temperatures for different bitumen samples in a batch plant", Case Studies in Construction Materials, Vol.16.Economic and environmental impacts of utilizing lower production temperatures for different bitumen samples in a batch plant(2022) Almusawi, Ali; Sengoz, Burak; Ozdemir, Derya Kaya; Topal, AliThe utilization of hot mix asphalt (HMA) for road construction necessitates high temperatures during mixing bitumen and aggregate at asphalt plant. The required (mixing) production temperature is calculated by the standard method (ASTM 2493). The application of this method for polymer modified bitumen (PMB) and warm mix asphalt (WMA) have tendency of higher temperatures. Therefore, some alternative methods suggested by literatures for the determination of production temperature for PMB and WMA have been implemented aiming to determine lower temperatures than the standard method (ASTM 2493). Moreover, the economic impacts of the determined production temperatures through different models are evaluated by the estimation of energy consumption in terms of electricity and natural gas costs for the batch type asphalt plants. Besides, the possible environmental effects are calculated by considering the carbon dioxide emissions. The results of this study have shown that the reduction in production temperatures led to a significant decrease in the total construction cost of each type of asphalt and a significant reduction in the estimated carbon dioxide emission. The results of this study can be used as a reference point for the estimation of both economic and environmental impacts of utilizing lower production temperatures for different bitumen samples.