Scopus İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/8651
Browse
Browsing Scopus İndeksli Yayınlar Koleksiyonu by WoS Q "Q3"
Now showing 1 - 20 of 712
- Results Per Page
- Sort Options
Article Citation - WoS: 20Citation - Scopus: 28About Schrodinger Equation on Fractals Curves Imbedding in R 3(Springer/plenum Publishers, 2015) Golmankhaneh, Ali Khalili; Baleanu, Dumitru; Golmankhaneh, Alireza KhaliliIn this paper we introduced the quantum mechanics on fractal time-space. In a suggested formalism the time and space vary on Cantor-set and Von-Koch curve, respectively. Using Feynman path method in quantum mechanics and F (alpha) -calculus we find SchrA << dinger equation on on fractal time-space. The Hamiltonian and momentum fractal operator has been indicated. More, the continuity equation and the probability density is given in view of F (alpha) -calculus.Article Citation - WoS: 13Citation - Scopus: 14An Accurate Legendre Collocation Scheme for Coupled Hyperbolic Equations With Variable Coefficients(Editura Acad Romane, 2014) Doha, E. H.; Baleanu, Dumitru; Bhrawy, A. H.; Baleanu, D.; Abdelkawy, M. A.; 56389; MatematikThe study of numerical solutions of nonlinear coupled hyperbolic partial differential equations (PDEs) with variable coefficients subject to initial-boundary conditions continues to be a major research area with widespread applications in modern physics and technology. One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (NPDEs) as well as PDEs with variable coefficients. A numerical solution based on a Legendre collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients. This approach, which is based on Legendre polynomials and Gauss-Lobatto quadrature integration, reduces the solving of nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equations that is far easier to solve. The obtained results show that the proposed numerical algorithm is efficient and very accurate.Article Citation - WoS: 4Citation - Scopus: 5Accurate Method To Calculate Noise Figure in a Low Noise Amplifier: Quantum Theory Analysis(Elsevier Sci Ltd, 2022) Salmanogli, Ahmad; Gecim, H. Selcuk; 182579In this study, a low-noise amplifier is quantum-mechanically analyzed to study the behavior of the noise figure. The analysis view has been changed from classic to quantum, because using quantum theory produces some degrees of freedom, which may be ignored when a circuit is analyzed using classical theory. For this purpose, the Lagrangian is initially derived by considering the related nonlinearity of the transistor, and then using the Legendre transformation and canonical quantization procedure, the quantum Hamiltonian is derived. As an interesting point of this study, the low-noise amplifier is deliberately considered as two oscillators connecting to each other to share the photonic modes between them; accordingly, the voltage and current as measurable observations and the noise figure as a critical quantity in a low-noise amplifier are theoretically expressed in terms of the oscillator's mean photon number. The main goal of this work is to study quantities such as the noise figure in a sufficient detail using quantum theory. In addition, as an advantage of this theory, one can control and manipulate the noise figure only by manipulation of the oscillator's mean photon number and coupling it between two oscillators. Finally, the circuit is classically designed and simulated to verify the derived results using quantum theory. The comparison results show that there is a partial consistency between the two approaches; as the frequency increases, the noise figure becomes minimized at a particular frequency.Article Citation - WoS: 7Citation - Scopus: 7The Acoustic Characterization of Worship Ambiance and Speech Intelligibility in Wooden Hypostyle Structures: The Case of the Aslanhane Mosque(Springer Singapore Pte Ltd, 2021) Kitapci, Kivanc; Celik Basok, Gulsah; 275153; 118348The challenge in the acoustics design of the traditional mosque is twofold. First, the interior atmosphere of the space should create a sacred feeling on the users' holistic and phenomenological spatial perception, which is generally recognized as a direct effect of increased reverberation time (T30) and low clarity (C80). Second, speech should be adequately intelligible, which requires a low T30 and high speech clarity, contradicting the initial concern of the sacred atmosphere. We hypothesize that in Islamic architecture, wooden hypostyle mosques may comply better with the reverberation time requirements of speech intelligibility, while maintaining the sacred feeling, due to their comparatively absorptive surface finishing materials and structural elements. The Aslanhane Mosque is a unique sacred structure within its era of construction, well-known with its wooden columns and ceiling. It is an important case for room acoustics analysis of such holy spaces. This study aimed to analyze the room acoustic measurement results of the Aslanhane Mosque, evaluating the intelligibility of speech and interpreting the sacred feeling created by reverberance, envelopment, and spaciousness, which are all crucial in such holy structures. It is revealed that although the Aslanhane Mosque's subjective rating for speech intelligibility is "good," the overall low volume of the mosque and the lack of surface reflections decrease the sacred sensation. Additionally, the intelligibility of speech is vulnerable to obstacles within the line of sight, such as load-bearing columns. Lastly, it was observed that the increase in T30 at low frequencies improved the sacred sensation, envelopment, and spaciousness, without any profound negative impact on the intelligibility of speech.Article Citation - WoS: 2Citation - Scopus: 4Adaptive Optics Compensation of M-Ary Pulse Position Modulated Communication Systems in Anisotropic Non-Kolmogorov Turbulent Atmosphere(Elsevier, 2021) Ata, Yalcin; Baykal, Yahya; Gokce, Muhsin CanerAdaptive optics compensation effect on the performance of an optical wireless communication system (OWC) employing M-ary pulse position modulation (PPM) scheme in anisotropic non-Kolmogorov turbulent atmosphere is investigated. Avalanche photodetector (APD) is used at the receiver side and log-normal channel that models the weak turbulence conditions is utilized. Anisotropy, generally resulting in better performance in OWC systems operating in the turbulent medium, combined with the adaptive optics applications will enhance the bit-error-rate (BER) of the OWC systems significantly. Results are obtained depending on various parameters for both the turbulent atmosphere and the receiver. Our work gives OWC system designers a perspective to optimize their design.Article Citation - WoS: 10Citation - Scopus: 12Adaptive Optics Corrections of Scintillations of Hermite-Gaussian Modes in an Oceanic Medium(Optical Soc Amer, 2020) Baykal, Yahya; 7812Adaptive optics correction of the scintillation index is found when Hermite-Gaussian laser beams are used in oceanic turbulence. Adaptive optics filter functions are used to find how the tilt, focus, astigmatism, coma, and total correction will behave under high order mode excitation. Reduction of the oceanic scintillation under various oceanic turbulence and system parameters is examined under different high order modes. Also, the effects of the source size, wavelength, and link length on the total adaptive optics correction of Hermite-Gaussian modes in an oceanic medium are investigated for different modes. (C) 2020 Optical Society of AmericaEditorial Citation - Scopus: 9Advanced Topics in Fractional Dynamics(Hindawi Ltd, 2013) Srivastava, H. M.; Daftardar-Gejji, Varsha; Li, Changpin; Machado, J. A. Tenreiro; Baleanu, Dumitru; 56389Article Citation - WoS: 3Citation - Scopus: 5Aeroelastic Optimization of the High Aspect Ratio Wing With Aileron(Tech Science Press, 2022) Mahariq, Ibrahim; Ghadak, Farhad; Accouche, Oussama; Jarad, Fahd; Ghalandari, Mohammad; 234808In aircraft wings, aileron mass parameter presents a tremendous effect on the velocity and frequency of the flutter problem. For that purpose, we present the optimization of a composite design wing with an aileron, using machine-learning approach. Mass properties and its distribution have a great influence on the multi-variate optimization procedure, based on speed and frequency of flutter. First, flutter speed was obtained to estimate aileron impact. Additionally mass-equilibrated and other features were investigated. It can deduced that changing the position and mass properties of the aileron are tangible following the speed and frequency of the wing flutter. Based on the proposed optimization method, the best position of the aileron is determined for the composite wing to postpone flutter instability and decrease the existed stress. The represented coupled aero-structural model is emerged from subsonic aerodynamics model, which has been developed using the panel method in multidimensional space. The structural modeling has been conducted by finite element method, using the p-k method. The fluid -structure equations are solved and the results are extracted.Article Citation - WoS: 12Citation - Scopus: 13Al2o3 and Γal2o3 Nanomaterials Based Nanofluid Models With Surface Diffusion: Applications for Thermal Performance in Multiple Engineering Systems and Industries(Tech Science Press, 2021) Khan, Umar; Ahmed, Naveed; Mohyud-Din, Syed Tauseef; Khan, Ilyas; Baleanu, Dumitru; Nisar, Kottakkaran Sooppy; Nan, Adnan; 56389Thermal transport investigation in colloidal suspensions is taking a significant research direction. The applications of these fluids are found in various industries, engineering, aerodynamics, mechanical engineering and medical sciences etc. A huge amount of thermal transport is essential in the operation of various industrial production processes. It is a fact that conventional liquids have lower thermal transport characteristics as compared to colloidal suspensions. The colloidal suspensions have high thermal performance due to the thermophysical attributes of the nanoparticles and the host liquid. Therefore, researchers focused on the analysis of the heat transport in nanofluids under diverse circumstances. As such, the colloidal analysis of H2O composed by gamma Al2O3 and Al2O3 is conducted over an elastic cylinder. The governing flow models of gamma Al2O3/H2O and Al2O3/H2O is reduced in the dimensionless form by adopting the described similarity transforms. The colloidal models are handled by implementing the suitable numerical technique and provided the results for the velocity, temperature and local thermal performance rate against the multiple flow parameters. From the presented results, it is shown that the velocity of Al(2)O3-H2O increases promptly against a high Reynolds number and it decreases for high-volume fraction. The significant contribution of the volumetric fraction is examined for thermal enhancement of nanofluids. The temperature of Al2O3-H2O and gamma Al2O3-H-2O significantly increases against a higher phi. Most importantly, the analysis shows that gamma Al2O3-H2O has a high local thermal performance rate compared to Al2O3-H2O. Therefore, it is concluded that gamma Al2O3-H2O is a better heat transfer fluid and is suitable for industrial and technological uses.Article Algebraic Integration of Sigma-Model Field Equations(Springer, 2009) Yilmaz, N. T.; 28932We prove that the dualization algebra of the sigma model with a symmetric coset space is a Lie algebra and show that it generates an appropriate adjoint representation that allows integrating the field equations locally, which yields first-order equations.Article Citation - WoS: 22Citation - Scopus: 23Alternative Interpretation of the Edge-Diffraction Phenomenon(Optical Soc Amer, 2008) Umul, Yusuf Z.; 42699An alternative interpretation of the phenomenon of edge diffraction is proposed according to a new separation of the Fresnel function. The subfields are investigated in the problem of diffraction of a plane wave by a perfectly conducting half-plane, and the results are compared numerically with other interpretations. (c) 2008 Optical Society of America.Article Citation - WoS: 85Citation - Scopus: 119Analysis and Dynamics of Fractional Order Mathematical Model of Covid-19 in Nigeria Using Atangana-Baleanu Operator(Tech Science Press, 2021) Shaikh, Amjad S.; Ibrahim, Mohammed O.; Nisar, Kottakkaran Sooppy; Baleanu, Dumitru; Khan, Ilyas; Abioye, Adesoye I.; Peter, Olumuyiwa J.; 56389We propose a mathematical model of the coronavirus disease 2019 (COVID-19) to investigate the transmission and control mechanism of the disease in the community of Nigeria. Using stability theory of differential equations, the qualitative behavior of model is studied. The pandemic indicator represented by basic reproductive number R-0 is obtained from the largest eigenvalue of the next-generation matrix. Local as well as global asymptotic stability conditions for the disease-free and pandemic equilibrium are obtained which determines the conditions to stabilize the exponential spread of the disease. Further, we examined this model by using Atangana-Baleanu fractional derivative operator and existence criteria of solution for the operator is established. We consider the data of reported infection cases from April 1, 2020, till April 30, 2020, and parameterized the model. We have used one of the reliable and efficient method known as iterative Laplace transform to obtain numerical simulations. The impacts of various biological parameters on transmission dynamics of COVID-19 is examined. These results are based on different values of the fractional parameter and serve as a control parameter to identify the significant strategies for the control of the disease. In the end, the obtained results are demonstrated graphically to justify our theoretical findings.Article Citation - WoS: 2Citation - Scopus: 2Analysis and Simplified Modelling of Simulation of Tests for Medium-Duty Truck Collision With Twin Anti-Ram Bollards(Taylor & Francis Ltd, 2020) Akyurek, Turgut; 48511An actual test of medium-duty truck collision with twin anti-ram bollards of steel tube is analysed and simulated with different mass-spring-damper models to study bollard design requirements. Test data is obtained from test report of a medium-duty truck crashed into two fixed twin bollards at speed 78.3 km/h. Maximum impact load and impact height at that time is important in the analysis. Bollard height should be close to or larger than the vehicle's centre of gravity height to avoid climbing of the truck on the bollard. However, increasing impact height yields also increase in failure risk of bollard. Foundation is also critical in success of the bollard in successfully stopping the vehicle. The bollard should be fixed to the frame embedded in the concrete foundation so that the deformation in concrete be minimised. The bollard should be so stiff to stop the vehicle while most of the impact energy is absorbed by the vehicle through deformation of its frontal sections. A single-degree freedom linear mass-spring-damper model is the simplest model, but its results are not in line with test data. Single-degree non-linear model simulates the peak load but not the load history. However, using engine mass instead of truck mass in the single-degree model provides acceptable impact force data for the bollard. Two-degree freedom mass-spring damper linear model seems to simulate both truck's and bollard's deformation in a good manner. Non-linear analysis simulates the collision in a more realistic way, but it requires more data to be determined with testing.Article Citation - WoS: 30Citation - Scopus: 33Analysis of a New Fractional Model for Damped Bergers' Equation(de Gruyter Open Ltd, 2017) Kumar, Devendra; Al Qurashi, Maysaa; Baleanu, Dumitru; Singh, Jagdev; 56389In this article, we present a fractional model of the damped Bergers' equation associated with the Caputo-Fabrizio fractional derivative. The numerical solution is derived by using the concept of an iterative method. The stability of the applied method is proved by employing the postulate of fixed point. To demonstrate the effectiveness of the used fractional derivative and the iterative method, numerical results are given for distinct values of the order of the fractional derivative.Article Citation - WoS: 6Citation - Scopus: 7Analysis of Diffusivity Equation Using Differential Quadrature Method(Editura Acad Romane, 2014) Razminia, K.; Baleanu, Dumitru; Razminia, A.; Kharrat, R.; Baleanu, D.; 56389; MatematikEvaluation of exact analytical solution for flow to a well, under the assumptions made in its development commonly requires large amounts of computation time and can produce inaccurate results for selected combinations of parameters. Large computation times occur because the solution involves the infinite series. Each term of the series requires evaluation of exponentials and Bessel functions, and the series itself is sometimes slowly convergent. Inaccuracies can result from lack of computer precision or from the use of improper methods of numerical computation. This paper presents a computationally efficient and an accurate new methodology in differential quadrature analysis of diffusivity equation to overcome these difficulties. The methodology would overcome the difficulties in boundary conditions implementations of second order partial differential equations encountered in such problems. The weighting coefficients employed are not exclusive, and any accurate and efficient method such as the generalized differential quadrature method may be used to produce the method's weighting coefficients. By solving finite and infinite boundary condition in diffusivity equation and by comparing the results with those of existing solutions and/or those of other methodologies, accuracy, convergences, reduction of computation time, and efficiency of the methodology are asserted.Article Citation - WoS: 42Citation - Scopus: 67Analysis of Fractal Wave Equations by Local Fractional Fourier Series Method(Hindawi Ltd, 2013) Baleanu, Dumitru; Yang, Xiao-Jun; Yang, Yong-Ju; 56389The fractal wave equations with local fractional derivatives are investigated in this paper. The analytical solutions are obtained by using local fractional Fourier series method. The present method is very efficient and accurate to process a class of local fractional differential equations.Article Citation - WoS: 6Citation - Scopus: 8Analysis of Heat Transfer Enhancement of Passive Methods in Tubes With Machine Learning(Sage Publications Ltd, 2024) Ayli, Ece; Turkoglu, Hasmet; Yapici, Ekin Ozgirgin; 31329; 265836; 12941This study investigates the efficacy of machine learning techniques and correlation methods for predicting heat transfer performance in a dimpled tube under varying flow conditions, including the presence of nanoparticles. A comprehensive numerical analysis involving 120 cases was conducted to obtain Nusselt numbers and friction factors, considering different dimple depths and velocities for both pure water and water-Al2O3 nanofluid at 1%, 2%, and 3% volume concentrations. Utilizing the data acquired from the numerical simulations, a correlation equation, SVM ANN architectures were developed. The predictive capabilities of the statistical approach, ANN, and SVM models for Nusselt number distribution and friction factor were meticulously assessed through mean average percentage error (MAPE) and correlation coefficients (R2). The research findings reveal that machine learning techniques offer a highly effective approach for accurately predicting heat transfer performance in a dimpled tube, with results closely aligned with Computational Fluid Dynamics (CFD) simulations. Particularly noteworthy is the superior performance of the ANN model, demonstrating the most precise predictions with an error rate of 2.54% and an impressive R2 value of 0.9978 for Nusselt number prediction. In comparison, the regression model achieved an average error rate of 6.14% with an R2 value of 0.8623, and the SVM model yielded an RMSE value of 2.984% with an R2 value of 0.9154 for Nusselt number prediction. These outcomes underscore the ANN model's ability to effectively capture complex patterns within the data, resulting in highly accurate predictions. In conclusion, this research showcases the promising potential of machine learning techniques in accurately forecasting heat transfer performance in dimpled tubes. The developed ANN model exhibits notable superiority in predicting Nusselt numbers, making it a valuable tool for enhancing thermal system analyses and engineering design optimization.Conference Object Citation - WoS: 37Citation - Scopus: 47Analysis of Keller-Segel Model With Atangana-Baleanu Fractional Derivative(Univ Nis, Fac Sci Math, 2018) Baleanu, Dumitru; Celik, Ercan; Dokuyucu, Mustafa Ali; 56389The new definition of the fractional derivative was defined by Atangana and Baleanu in 2016. They used the generalized Mittag-Leffler function with the non-singular and non-local kernel. Further, their version provides all properties of fractional derivatives. Our aim is to analyse the Keller-Segel model with Caputo and Atangana-Baleanu fractional derivative in Caputo sense. Using fixed point theory, we first show the existence of coupled solutions. We then examine the uniqueness of these solutions. Finally, we compare our results numerically by modifying our model according to both definitions, and we demonstrate these results on the graphs in detail. All computations were done using Mathematica.Article Citation - WoS: 47Citation - Scopus: 49Analysis of Logistic Equation Pertaining To a New Fractional Derivative With Non-Singular Kernel(Sage Publications Ltd, 2017) Singh, Jagdev; Al Qurashi, Maysaa; Baleanu, Dumitru; Kumar, Devendra; 56389In this work, we aim to analyze the logistic equation with a new derivative of fractional order termed in Caputo-Fabrizio sense. The logistic equation describes the population growth of species. The existence of the solution is shown with the help of the fixed-point theory. A deep analysis of the existence and uniqueness of the solution is discussed. The numerical simulation is conducted with the help of the iterative technique. Some numerical simulations are also given graphically to observe the effects of the fractional order derivative on the growth of population.Article Citation - WoS: 8Citation - Scopus: 8Analysis of the Specific Heat and the Free Energy of [N(ch3)4]2znbr4 Close To the Ferro-Paraelastic Phase Transition(Taylor & Francis Ltd, 2019) Kiraci, A.; 42475A power-law formula deduced from the Ising model was used to analyze the temperature dependence of the specific heat and the Gibbs free energy of [N(CH3)(4)](2)ZnBr4 compound in the vicinity of the phase transition temperature of T-C = 287.2 K. Obtained values of the critical exponents from the Gibbs free energy were consistent with that predicted from 2-d potts model ( = 0.3), while obtained values of from the specific heat in both ferroelastic and paraelastic phases were consistent with that predicted from the mean field theory ( = 0) in the vicinity of the phase transition temperature. This is an indication of that [N(CH3)(4)](2)ZnBr4 compound undergoes a second order type phase transition. Also, the enthalpy () and the entropy () of this crystal were calculated in terms of the extracted values of the critical exponent in both ferroelastic and paraelastic phases.
