PubMed İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12416/8650
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu by WoS Q "Q1"
Now showing 1 - 20 of 83
- Results Per Page
- Sort Options
Article Citation - WoS: 106Citation - Scopus: 123A comparative review of environmental concern prioritization: LEED vs other major certification systems(Academic Press Ltd- Elsevier Science Ltd, 2015) Suzer, Ozge; 27418; İç MimarlıkThe matter of environmental concern prioritization integrated into globally used green building rating systems is a fundamental issue since it determines how the performance of a structure or development is reflected. Certain nationally-developed certification systems are used globally without being subjected to adjustments with respect to local geographical, cultural, economic and social parameters. This may lead to a situation where the results of an evaluation may not reflect the reality of the region and/or the site of construction. The main objective of this paper is to examine and underline the problems regarding the issue of weighting environmental concerns in the Leadership in Energy and Environmental Design (LEED) certification system, which is a US-originated but globally used assessment tool. The methodology of this study consists of; (i) an analysis of the approach of LEED in the New Construction and Major Renovations scheme in version 3 (LEED NC, v.3) and the Building Design and Construction scheme in version 4 (LEED BD + C, v.4), (ii) case studies in which regional priority credits (RPCs) set by LEED for four countries (Canada, Turkey, China and Egypt) are criticized with respect to countries' own local conditions, and, (iii) an analysis of the approaches of major environmental assessment tools, namely; BREEAM, SBTool, CASBEE and Green Star, in comparison to the approach in LEED, regarding the main issue of this paper. This work shows that, even in its latest version (v.4) LEED still displays some inadequacies and inconsistencies from the aspect of environmental concern prioritization and has not yet managed to incorporate a system which is more sensitive to this issue. This paper further outlines the differences and similarities between the approaches of the aforementioned major environmental assessment tools with respect to the issue of concern and the factors that should be integrated into future versions of LEED. (C) 2015 Elsevier Ltd. All rights reserved.Article Citation - WoS: 152Citation - Scopus: 184A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative(Springer, 2020) Baleanu, Dumitru; Mohammadi, Hakimeh; Rezapour, Shahram; 56389; MatematikWe present a fractional-order model for the COVID-19 transmission with Caputo-Fabrizio derivative. Using the homotopy analysis transform method (HATM), which combines the method of homotopy analysis and Laplace transform, we solve the problem and give approximate solution in convergent series. We prove the existence of a unique solution and the stability of the iteration approach by using fixed point theory. We also present numerical results to simulate virus transmission and compare the results with those of the Caputo derivative.Article Citation - WoS: 36Citation - Scopus: 36A hybrid fractional optimal control for a novel Coronavirus (2019-nCov) mathematical model(Elsevier, 2021) Sweilam, N. H.; AL-Mekhlafi, S. M.; Baleanu, D.; 56389; MatematikIntroduction: Coronavirus COVID-19 pandemic is the defining global health crisis of our time and the greatest challenge we have faced since world war two. To describe this disease mathematically, we noted that COVID-19, due to uncertainties associated to the pandemic, ordinal derivatives and their associated integral operators show deficient. The fractional order differential equations models seem more consistent with this disease than the integer order models. This is due to the fact that fractional derivatives and integrals enable the description of the memory and hereditary properties inherent in various materials and processes. Hence there is a growing need to study and use the fractional order differential equations. Also, optimal control theory is very important topic to control the variables in mathematical models of infectious disease. Moreover, a hybrid fractional operator which may be expressed as a linear combination of the Caputo fractional derivative and the Riemann-Liouville fractional integral is recently introduced. This new operator is more general than the operator of Caputo's fractional derivative. Numerical techniques are very important tool in this area of research because most fractional order problems do not have exact analytic solutions. Objectives: A novel fractional order Coronavirus (2019-nCov) mathematical model with modified parameters will be presented. Optimal control of the suggested model is the main objective of this work. Three control variables are presented in this model to minimize the number of infected populations. Necessary control conditions will be derived. Methods: The numerical methods used to study the fractional optimality system are the weighted average nonstandard finite difference method and the Grunwald-Letnikov nonstandard finite difference method. Results: The proposed model with a new fractional operator is presented. We have successfully applied a kind of Pontryagin's maximum principle and were able to reduce the number of infected people using the proposed numerical methods. The weighted average nonstandard finite difference method with the new operator derivative has the best results than Grunwald-Letnikov nonstandard finite difference method with the same operator. Moreover, the proposed methods with the new operator have the best results than the proposed methods with Caputo operator. Conclusions: The combination of fractional order derivative and optimal control in the Coronavirus (2019-nCov) mathematical model improves the dynamics of the model. The new operator is more general and suitable to study the optimal control of the proposed model than the Caputo operator and could be more useful for the researchers and scientists. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University.Article Citation - WoS: 27Citation - Scopus: 29A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host(Pergamon-elsevier Science Ltd, 2020) Bozkurt, Fatma; Yousef, Ali; Baleanu, Dumitru; Alzabut, Jehad; 56389; MatematikCoronaviruses are highly transmissible and are pathogenic viruses of the 21st century worldwide. In general, these viruses are originated in bats or rodents. At the same time, the transmission of the infection to the human host is caused by domestic animals that represent in the habitat the intermediate host. In this study, we review the currently collected information about coronaviruses and establish a model of differential equations with piecewise constant arguments to discuss the spread of the infection from the natural host to the intermediate, and from them to the human host, while we focus on the potential spillover of bat-borne coronaviruses. The local stability of the positive equilibrium point of the model is considered via the Linearized Stability Theorem. Besides, we discuss global stability by employing an appropriate Lyapunov function. To analyze the outbreak in early detection, we incorporate the Allee effect at time t and obtain stability conditions for the dynamical behavior. Furthermore, it is shown that the model demonstrates the Neimark-Sacker Bifurcation. Finally, we conduct numerical simulations to support the theoretical findings. (C) 2020 Elsevier Ltd. All rights reserved.Article Citation - WoS: 168Citation - Scopus: 176A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence(Amer inst Physics, 2019) Jajarmi, Amin; Ghanbari, Behzad; Baleanu, Dumitru; 56389; MatematikThe main objective of this research is to investigate a new fractional mathematical model involving a nonsingular derivative operator to discuss the clinical implications of diabetes and tuberculosis coexistence. The new model involves two distinct populations, diabetics and nondiabetics, while each of them consists of seven tuberculosis states: susceptible, fast and slow latent, actively tuberculosis infection, recovered, fast latent after reinfection, and drug-resistant. The fractional operator is also considered a recently introduced one with Mittag-Leffler nonsingular kernel. The basic properties of the new model including non-negative and bounded solution, invariant region, and equilibrium points are discussed thoroughly. To solve and simulate the proposed model, a new and efficient numerical method is established based on the product-integration rule. Numerical simulations are presented, and some discussions are given from the mathematical and biological viewpoints. Next, an optimal control problem is defined for the new model by introducing four control variables reducing the number of infected individuals. For the control problem, the necessary and sufficient conditions are derived and numerical simulations are given to verify the theoretical analysis.Article Citation - WoS: 270Citation - Scopus: 292A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator(Amer inst Physics, 2019) Baleanu, D.; Jajarmi, A.; Sajjadi, S. S.; Mozyrska, D.; 56389; MatematikIn this paper, we present a new fractional-order mathematical model for a tumor-immune surveillance mechanism. We analyze the interactions between various tumor cell populations and immune system via a system of fractional differential equations (FDEs). An efficient numerical procedure is suggested to solve these FDEs by considering singular and nonsingular derivative operators. An optimal control strategy for investigating the effect of chemotherapy treatment on the proposed fractional model is also provided. Simulation results show that the new presented model based on the fractional operator with Mittag-Leffler kernel represents various asymptomatic behaviors that tracks the real data more accurately than the other fractional- and integer-order models. Numerical simulations also verify the efficiency of the proposed optimal control strategy and show that the growth of the naive tumor cell population is successfully declined. Published under license by AIP Publishing.Article Citation - WoS: 43Citation - Scopus: 44A new fractional wavelet approach for the simultaneous determination of ampicillin sodium and sulbactam sodium in a binary mixture(Pergamon-elsevier Science Ltd, 2006) Dinç, E; Baleanu, DB; 6981; MatematikA new application of the fractional wavelet transform (FWT) was proposed for the simultaneous determination of ampicillin (AP) and sulbactam (SB) in a pharmaceutical combination for injection. FWT approach is a new powerful tool for removing noise and irrelevant information from the absorption spectra. Cardinal information having higher peak amplitude, eliminated noise, sharp peaks with shrinking width of spectral range was obtained by the application of FWT procedure to the original absorption spectra. In this paper, FWT approach was subjected to the data vector of the UV-signals obtained from AP and SB in the wavelength range of 211.5-313.8 nm. Derivative transform was applied to the original absorption signal together with its FWT generalization. The calibration graphs for AP and SB were obtained by measuring the FWT and usual derivative amplitudes at zero-crossing points. The method validation was carried out by using the synthetic mixture analysis. Our proposed FWT approach was compared with the usual derivative spectrophotometry and chemometric methods (CLS, PCR and PLS) and a good agreement was reported. (c) 2005 Elsevier B.V. All rights reserved.Article Citation - WoS: 71Citation - Scopus: 80An application of derivative and continuous wavelet transforms to the overlapping ratio spectra for the quantitative multiresolution of a ternary mixture of paracetamol, acetylsalicylic acid and caffeine in tablets(Elsevier Science Bv, 2005) Dinç, E; Özdemir, A; Baleanu, D; 56389; MatematikQuantitative multi resolution of tablets and ternary mixtures of paracetamol (PAR), acetylsalicylic acid (ASP) and caffeine (CAF) having strongly overlapping spectra was accomplished by two graphical transform methods as ratio spectra first derivative-zero crossing and ratio spectra-continuous wavelet transform-zero crossing (ratio spectra CWT-zero crossing) methods. In this study, ratio spectra derivative-zero crossing and ratio spectra CWT-zero crossing methods are based on the use of transformed signals of the ratio spectra and their calibration graphs were obtained by measuring the dA/dlambda and CWT amplitudes of the ratio spectra corresponding to zero crossing points. For the comparison purpose. PLS calibration method was applied to predict the content of the same mixtures containing the subject active Compounds. The obtained calibrations were tested by using the synthetic mixtures and standard addition technique and they applied to the simultaneous determination of PAR, ASP and CAF in commercial pharmaceutical preparation. The obtained results were statistically compared with each other as well as those obtained by HPLC method and they showed good agreement. (C) 2004 Published by Elsevier B.V.Article Citation - WoS: 96Citation - Scopus: 115Anaerobic digestion of dairy manure with enhanced ammonia removal(Academic Press Ltd- Elsevier Science Ltd, 2008) Uludag-Demirer, S.; Demirer, G. N.; Frear, C.; Chen, S.; 45685Poor ammonia-nitrogen removal in methanogenic anaerobic reactors digesting animal manure has been reported as an important disadvantage of anaerobic digestion (AD) in several studies. Development of anaerobic processes that are capable of producing reduced ammonia-nitrogen levels in their effluent is one of the areas where further research must be pursued if AD technology is to be made more effective and economically advantageous. One approach to removing ammonia from anaerobically digested effluents is the forced precipitation of magnesium ammonium phosphate hexahydrate (MgNH4PO4-6H(2)O), commonly called struvite. Struvite is a valuable plant nutrient source for nitrogen and phosphorus since it releases them slowly and has non-burning features because of its low solubility in water. This study investigated coupling AD and controlled struvite precipitation in the same reactor to minimize the nitrogen removal costs and possibly increase the performance of the AD by reducing the ammonia concentration which has an adverse effect oil anaerobic bacteria. The results indicated that Lip to 19% extra COD and almost 11% extra NH3 removals were achieved relative to a control by adding 1750 mg/L of MgCl2-6H(2)O to the anaerobic reactor. (C) 2007 Elsevier Ltd. All rights reserved.Article Citation - WoS: 64Citation - Scopus: 83Analysis of fractional model of guava for biological pest control with memory effect(Elsevier, 2021) Singh, Jagdev; Ganbari, Behzad; Kumar, Devendra; Baleanu, Dumitru; 56389; MatematikIntroduction: Fractional operators find their applications in several scientific and engineering processes. We consider a fractional guava fruit model involving a non-local additionally non-singular fractional derivative for the interaction into guava pests and natural enemies. The fractional guava fruit model is considered as a Lotka-Volterra nature. Objectives: The main objective of this work is to study a guava fruit model associated with a non-local additionally non-singular fractional derivative for the interaction into guava pests and natural enemies. Methods: Existence and uniqueness analysis of the solution is evaluated effectively by using Picard Lindelof approach. An approximate numerical solution of the fractional guava fruit problem is obtained via a numerical scheme. Results: The positivity analysis and equilibrium analysis for the fractional guava fruit model is discussed. The numerical results are demonstrated to prove our theoretical results. The graphical behavior of solution of the fractional guava problem at the distinct fractional order values and at various parameters is discussed. Conclusion: The graphical behavior of solution of the fractional guava problem at the distinct fractional order values and at various parameters shows new vista and interesting phenomena of the model. The results are indicating that the fractional approach with non-singular kernel plays an important role in the study of different scientific problems. The suggested numerical scheme is very efficient for solving nonlinear fractional models of physical importance. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University.Article Citation - WoS: 26Citation - Scopus: 30Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative(Amer inst Physics, 2019) Salahshour, S.; Ahmadian, A.; Salimi, M.; Ferrara, M.; Baleanu, D.; 56389; MatematikRealizing the behavior of the solution in the asymptotic situations is essential for repetitive applications in the control theory and modeling of the real-world systems. This study discusses a robust and definitive attitude to find the interval approximate asymptotic solutions of fractional differential equations (FDEs) with the Atangana-Baleanu (A-B) derivative. In fact, such critical tasks require to observe precisely the behavior of the noninterval case at first. In this regard, we initially shed light on the noninterval cases and analyze the behavior of the approximate asymptotic solutions, and then, we introduce the A-B derivative for FDEs under interval arithmetic and develop a new and reliable approximation approach for fractional interval differential equations with the interval A-B derivative to get the interval approximate asymptotic solutions. We exploit Laplace transforms to get the asymptotic approximate solution based on the interval asymptotic A-B fractional derivatives under interval arithmetic. The techniques developed here provide essential tools for finding interval approximation asymptotic solutions under interval fractional derivatives with nonsingular Mittag-Leffler kernels. Two cases arising in the real-world systems are modeled under interval notion and given to interpret the behavior of the interval approximate asymptotic solutions under different conditions as well as to validate this new approach. This study highlights the importance of the asymptotic solutions for FDEs regardless of interval or noninterval parameters. Published under license by AIP Publishing.Article Citation - WoS: 32Citation - Scopus: 43Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning Methods(Springer, 2022) Ureten, Kemal; Maras, Hadi Hakan; 34410; Bilgisayar MühendisliğiRheumatoid arthritis and hand osteoarthritis are two different arthritis that causes pain, function limitation, and permanent joint damage in the hands. Plain hand radiographs are the most commonly used imaging methods for the diagnosis, differential diagnosis, and monitoring of rheumatoid arthritis and osteoarthritis. In this retrospective study, the You Only Look Once (YOLO) algorithm was used to obtain hand images from original radiographs without data loss, and classification was made by applying transfer learning with a pre-trained VGG-16 network. The data augmentation method was applied during training. The results of the study were evaluated with performance metrics such as accuracy, sensitivity, specificity, and precision calculated from the confusion matrix, and AUC (area under the ROC curve) calculated from ROC (receiver operating characteristic) curve. In the classification of rheumatoid arthritis and normal hand radiographs, 90.7%, 92.6%, 88.7%, 89.3%, and 0.97 accuracy, sensitivity, specificity, precision, and AUC results, respectively, and in the classification of osteoarthritis and normal hand radiographs, 90.8%, 91.4%, 90.2%, 91.4%, and 0.96 accuracy, sensitivity, specificity, precision, and AUC results were obtained, respectively. In the classification of rheumatoid arthritis, osteoarthritis, and normal hand radiographs, an 80.6% accuracy result was obtained. In this study, to develop an end-to-end computerized method, the YOLOv4 algorithm was used for object detection, and a pre-trained VGG-16 network was used for the classification of hand radiographs. This computer-aided diagnosis method can assist clinicians in interpreting hand radiographs, especially in rheumatoid arthritis and osteoarthritis.Article Citation - WoS: 17Citation - Scopus: 15Bipolar intuitionistic fuzzy graph based decision-making model to identify flood vulnerable region(Springer Heidelberg, 2023) Nithyanandham, Deva; Augustin, Felix; Narayanamoorthy, Samayan; Ahmadian, Ali; Balaenu, Dumitru; Kang, Daekook; 56389; MatematikBipolar intuitionistic fuzzy graphs (BIFG) are an extension of fuzzy graphs that can effectively capture uncertain or imprecise information in various applications. In graph theory, the covering, matching, and domination problems are benchmark concepts applied to various domains. These concepts may not be defined precisely using a crisp graph when the vertices and edges are more uncertain. Therefore, this study defines the covering, matching and domination concepts in bipolar intuitionistic fuzzy graphs (BIFG) using effective edges with certain important results. To define these concepts when the effective edges are absent, some novel approaches are discussed. To illustrate the domination concepts, the applications in disaster management and location selection problems are discussed. Further, a BIFG-based decision-making model is designed to identify the flood-vulnerable zones in Chennai, where the city's most and least vulnerable zones are identified. From the proposed model, Kodambakkam (Z(10)) is the most susceptible zone in Chennai. Finally, a comparative analysis is done with the existing techniques to show the efficiency of the model.Article Citation - WoS: 28Citation - Scopus: 35Caputo SIR model for COVID-19 under optimized fractional order(Springer, 2021) Alshomrani, Ali S.; Ullah, Malik Z.; Baleanu, Dumitru; 56389; MatematikEveryone is talking about coronavirus from the last couple of months due to its exponential spread throughout the globe. Lives have become paralyzed, and as many as 180 countries have been so far affected with 928,287 (14 September 2020) deaths within a couple of months. Ironically, 29,185,779 are still active cases. Having seen such a drastic situation, a relatively simple epidemiological SIR model with Caputo derivative is suggested unlike more sophisticated models being proposed nowadays in the current literature. The major aim of the present research study is to look for possibilities and extents to which the SIR model fits the real data for the cases chosen from 1 April to 15 March 2020, Pakistan. To further analyze qualitative behavior of the Caputo SIR model, uniqueness conditions under the Banach contraction principle are discussed and stability analysis with basic reproduction number is investigated using Ulam-Hyers and its generalized version. The best parameters have been obtained via the nonlinear least-squares curve fitting technique. The infectious compartment of the Caputo SIR model fits the real data better than the classical version of the SIR model (Brauer et al. in Mathematical Models in Epidemiology 2019). Average absolute relative error under the Caputo operator is about 48% smaller than the one obtained in the classical case (nu=1). Time series and 3D contour plots offer social distancing to be the most effective measure to control the epidemic.Article Citation - WoS: 24Citation - Scopus: 26Comparative spectral analysis of veterinary powder product by continuous wavelet and derivative transforms(Pergamon-elsevier Science Ltd, 2007) Dinc, Erdal; Kanbur, Murat; Baleanu, Dumitru; 6981; 36107; MatematikComparative simultaneous determination of chlortetracycline and benzocaine in the commercial veterinary powder product was carried out by continuous wavelet transform (CWT) and classical derivative transform (or classical derivative spectrophotometry). In this quantitative spectral analysis, two proposed analytical methods do not require any chemical separation process. In the first step, several wavelet families were tested to find an optimal CWT for the overlapping signal processing of the analyzed compounds. Subsequently, we observed that the coiflets (COIF-CWT) method with dilation parameter, a = 400, gives suitable results for this analytical application. For a comparison, the classical derivative spectrophotometry (CDS) approach was also applied to the simultaneous quantitative resolution of the same analytical problem. Calibration functions were obtained by measuring the transform amplitudes corresponding to zero-crossing points for both CWT and CDS methods. The utility of these two analytical approaches were verified by analyzing various synthetic mixtures consisting of chlortetracycline and benzocaine and they were applied to the real samples consisting of veterinary powder formulation. The experimental results obtained from the COIF-CWT approach were statistically compared with those obtained by classical derivative spectrophotometry and successful results were reported. (C) 2006 Elsevier B.V. All rights reserved.Article Citation - WoS: 54Citation - Scopus: 54Comparative study of artificial neural network versus parametric method in COVID-19 data analysis(Elsevier, 2022) Shafiq, Anum; Colak, Andac Batur; Sindhu, Tabassum Naz; Lone, Showkat Ahmad; Alsubie, Abdelaziz; Jarad, Fahd; 234808; MatematikSince the previous two years, a new coronavirus (COVID-19) has found a major global problem. The speedy pathogen over the globe was followed by a shockingly large number of afflicted people and a gradual increase in the number of deaths. If the survival analysis of active individuals can be predicted, it will help to contain the epidemic significantly in any area. In medical diagnosis, prognosis and survival analysis, neural networks have been found to be as successful as general nonlinear models. In this study, a real application has been developed for estimating the COVID-19 mortality rates in Italy by using two different methods, artificial neural network modeling and maximum likelihood estimation. The predictions obtained from the multilayer artificial neural network model developed with 9 neurons in the hidden layer were compared with the numerical results. The maximum deviation calculated for the artificial neural network model was -0.14% and the R value was 0.99836. The study findings confirmed that the two different statistical models that were developed had high reliability.Article Citation - WoS: 6Citation - Scopus: 7Damping Constant (Linewidth) and the Relaxation Time of the Brillouin LA Mode for the Ferroelectric-Paraelectric Transition in PbZr1-xTixO3(Ieee-inst Electrical Electronics Engineers inc, 2016) Yurtseven, Hamit; Kiraci, Ali; 42475; Ortak Dersler BölümüThe damping constant (linewidth) of the longitudinal acoustic (LA) mode is calculated as a function of temperature using the observed Brillouin frequencies of this mode from the literature for the ferroelectric-paraelectric transition (T-C = 657 K) in PbZr1-xTixO3 (x = 0.45). For this calculation of the damping constant, the pseudospin-phonon coupled model and the energy fluctuation model are used by fitting to the observed data for the Brillouin frequencies of the LA mode in the ferroelectric (T < T-C) and paraelectric (T > T-C) phases of this compound (x = 0.45). Values of the activation energy are deduced for both ferroelectric and paraelectric phases. The relaxation time is also obtained by means of fitting to the observed data from the literature for the inverse relaxation time at various temperatures in the paraelectric phase of PbZr1-xTixO3. The temperature dependences of the damping constant and of the relaxation time with the values of the activation energy that we have calculated indicate that the pseudospin-phonon coupled model and the energy fluctuation model are capable of describing the ferroelectric-paraelectric transition (T-C = 657 K) in PbZr1-xTixO3 (x = 0.45) adequately.Article Citation - WoS: 31Citation - Scopus: 35Design of a fractional-order atmospheric model via a class of ACT-like chaotic system and its sliding mode chaos control(Aip Publishing, 2023) Naik, Manisha Krishna; Baishya, Chandrali; Veeresha, Pundikala; Baleanu, Dumitru; 56389; MatematikInvestigation of the dynamical behavior related to environmental phenomena has received much attention across a variety of scientific domains. One such phenomenon is global warming. The main causes of global warming, which has detrimental effects on our ecosystem, are mainly excess greenhouse gases and temperature. Looking at the significance of this climatic event, in this study, we have connected the ACT-like model to three climatic components, namely, permafrost thaw, temperature, and greenhouse gases in the form of a Caputo fractional differential equation, and analyzed their dynamics. The theoretical aspects, such as the existence and uniqueness of the obtained solution, are examined. We have derived two different sliding mode controllers to control chaos in this fractional-order system. The influences of these controllers are analyzed in the presence of uncertainties and external disturbances. In this process, we have obtained a new controlled system of equations without and with uncertainties and external disturbances. Global stability of these new systems is also established. All the aspects are examined for commensurate and non-commensurate fractional-order derivatives. To establish that the system is chaotic, we have taken the assistance of the Lyapunov exponent and the bifurcation diagram with respect to the fractional derivative. To perform numerical simulation, we have identified certain values of the parameters where the system exhibits chaotic behavior. Then, the theoretical claims about the influence of the controller on the system are established with the help of numerical simulations.Article Citation - WoS: 15Citation - Scopus: 16Design of Gudermannian Neuroswarming to solve the singular Emden-Fowler nonlinear model numerically(Springer, 2021) Sabir, Zulqurnain; Raja, Muhammad Asif Zahoor; Baleanu, Dumitru; Cengiz, Korhan; Shoaib, Muhammad; 56389; MatematikThe current investigation is related to the design of novel integrated neuroswarming heuristic paradigm using Gudermannian artificial neural networks (GANNs) optimized with particle swarm optimization (PSO) aid with active-set (AS) algorithm, i.e., GANN-PSOAS, for solving the nonlinear third-order Emden-Fowler model (NTO-EFM) involving single as well as multiple singularities. The Gudermannian activation function is exploited to construct the GANNs-based differential mapping for NTO-EFMs, and these networks are arbitrary integrated to formulate the fitness function of the system. An objective function is optimized using hybrid heuristics of PSO with AS, i.e., PSOAS, for finding the weights of GANN. The correctness, effectiveness and robustness of the designed GANN-PSOAS are verified through comparison with the exact solutions on three problems of NTO-EFMs. The assessments on statistical observations demonstrate the performance on different measures for the accuracy, consistency and stability of the proposed GANN-PSOAS solver.Article Citation - WoS: 60Citation - Scopus: 66Dynamical behaviours and stability analysis of a generalized fractional model with a real case study(Elsevier, 2023) Baleanu, D.; Arshad, S.; Jajarmi, A.; Shokat, W.; Ghassabzade, F. Akhavan; Wali, M.; 56389Introduction: Mathematical modelling is a rapidly expanding field that offers new and interesting oppor-tunities for both mathematicians and biologists. Concerning COVID-19, this powerful tool may help humans to prevent the spread of this disease, which has affected the livelihood of all people badly. Objectives: The main objective of this research is to explore an efficient mathematical model for the investigation of COVID-19 dynamics in a generalized fractional framework.Methods: The new model in this paper is formulated in the Caputo sense, employs a nonlinear time -varying transmission rate, and consists of ten population classes including susceptible, infected, diag-nosed, ailing, recognized, infected real, threatened, diagnosed recovered, healed, and extinct people. The existence of a unique solution is explored for the new model, and the associated dynamical beha-viours are discussed in terms of equilibrium points, invariant region, local and global stability, and basic reproduction number. To implement the proposed model numerically, an efficient approximation scheme is employed by the combination of Laplace transform and a successive substitution approach; besides, the corresponding convergence analysis is also investigated.Results: Numerical simulations are reported for various fractional orders, and simulation results are com-pared with a real case of COVID-19 pandemic in Italy. By using these comparisons between the simulated and measured data, we find the best value of the fractional order with minimum absolute and relative errors. Also, the impact of different parameters on the spread of viral infection is analyzed and studied.Conclusion: According to the comparative results with real data, we justify the use of fractional concepts in the mathematical modelling, for the new non-integer formalism simulates the reality more precisely than the classical framework.& COPY; 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).