Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Strength Prediction of Engineered Cementitious Composites With Artificial Neural Networks

dc.contributor.author Yesilmen, S.
dc.contributor.other 06.05. İnşaat Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2023-01-16T07:54:02Z
dc.date.accessioned 2025-09-18T16:08:39Z
dc.date.available 2023-01-16T07:54:02Z
dc.date.available 2025-09-18T16:08:39Z
dc.date.issued 2021
dc.description.abstract Engineered Cementitious composites (ECC) became widely popular in the last decade due to their superior mechanical and durability properties. Strength prediction of ECC remains an important subject since the variation of strength with age is more emphasized in these composites. In this study, mix design components and corresponding strengths of various ECC designs are obtained from the literature and ANN models were developed to predict compressive and flexural strength of ECCs. Error margins of both models were on the lower side of the reported error values in the available literature while using data with the highest variability and noise. As a result, both models claim considerable applicability in all ECC mixture types. © 2021 MIM Research Group. All rights reserved. en_US
dc.description.publishedMonth 6
dc.identifier.citation Yeşilmen, Seda (2021). "Strength prediction of engineered cementitious composites with artificial neural networks", Research on Engineering Structures and Materials, Vol. 7, no. 2, pp. 173-182. en_US
dc.identifier.doi 10.17515/resm2020.222ma1013
dc.identifier.issn 2148-9807
dc.identifier.scopus 2-s2.0-85118250469
dc.identifier.uri https://doi.org/10.17515/resm2020.222ma1013
dc.identifier.uri https://hdl.handle.net/20.500.12416/15132
dc.language.iso en en_US
dc.publisher MIM RESEARCH GROUP en_US
dc.relation.ispartof Research on Engineering Structures and Materials en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Ann en_US
dc.subject Compressive Strengt en_US
dc.subject Ecc en_US
dc.subject Strength Prediction en_US
dc.title Strength Prediction of Engineered Cementitious Composites With Artificial Neural Networks en_US
dc.title Strength prediction of engineered cementitious composites with artificial neural networks tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Selçuk, Seda
gdc.author.scopusid 58622787300
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Yesilmen S., Department of Civil Engineering, Cankaya University, Ankara, Türkiye en_US
gdc.description.endpage 182 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 173 en_US
gdc.description.volume 7 en_US
gdc.identifier.openalex W3130638396
gdc.identifier.trdizinid 452744
gdc.openalex.fwci 0.54592204
gdc.openalex.normalizedpercentile 0.62
gdc.opencitations.count 0
gdc.plumx.mendeley 15
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
relation.isAuthorOfPublication becadbd0-e6b5-44f8-8cf2-c45c211b4c3d
relation.isAuthorOfPublication.latestForDiscovery becadbd0-e6b5-44f8-8cf2-c45c211b4c3d
relation.isOrgUnitOfPublication 77a9f192-0d56-4f8e-adf2-a1c91a7124c9
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 77a9f192-0d56-4f8e-adf2-a1c91a7124c9

Files