Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

New predictor-corrector type iterative methods for solving nonlinear equations

Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
İnşaat Mühendisliği
Bölümümüzün amacı inşaat mühendisliği alanında nitelikli eğitim veren, lisans ve lisansüstü mezunları; özel sektör, kamu ve araştırma kurumlarınca tercih edilen, ulusal ve uluslararası düzeyde saygın inşaat mühendisliği bölümleri arasında olmaktır.  

Journal Issue

Events

Abstract

Bu makale, nonlineer denklemleri çözmek için, iki yeni öngörme-düzeltme tipi yineli yöntem önerir. Bu yöntemler, iyi bilinen ikiye bölme yöntemi ve Newton-Raphson yönteminin kombinasyonuna dayalı bir şekilde oluşturulmuştur. Çeşitli nümerik örnekler, bu yöntemlerin ana amaçlarını doğrulamaya ve nümerik sonuçlarını karşılaştırmaya hizmet etmektedir. Nümerik sonuçlar, herhangi nonlineer bir denklemin tam köküne ulaşmak için elde edilecek yineleme sayısı cinsinden bu yeni önerilen yöntemlerin yakınsama hızlarını test etmek için de sunulmuştur. Elde edilen bu nümerik sonuçlar, önerilen yeni yöntemlerin iyi bilinen her iki yöntemlerden biri olan ikiye bölme ve NewtonRaphson'dan ve ayrıca literatürdeki diğer yöntemlerden de daha iyi performans gösterdiğine de, işaret etmektedir.

Description

Keywords

Bilgisayar Bilimleri, Yazılım Mühendisliği, Matematik, Bilgisayar Bilimleri, Teori Ve Metotlar, Bilgisayar Bilimleri, Yapay Zeka

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Dinçkal, Çiğdem. (2017). "New predictor-corrector type iterative methods for solving nonlinear equations", Sakarya University Journal of Science, pp.464-468.

WoS Q

N/A

Scopus Q

N/A

Source

Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi

Volume

21

Issue

3

Start Page

463

End Page

468