Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Multiple linear regression model under nonnormality

dc.contributor.authorIslam, M. Qamarul
dc.contributor.authorTiku, Moti L.
dc.date.accessioned2024-04-25T07:36:48Z
dc.date.available2024-04-25T07:36:48Z
dc.date.issued2004
dc.departmentÇankaya Üniversitesi, İktisadi ve İdari Bilimler Fakültesi, İktisat Bölümüen_US
dc.description.abstractWe consider multiple linear regression models under nonnormality. We derive modified maximum likelihood estimators (MMLEs) of the parameters and show that they are efficient and robust. We show that the least squares esimators are considerably less efficient. We compare the efficiencies of the MMLEs and the M estimators for symmetric distributions and show that, for plausible alternatives to an assumed distribution, the former are more efficient. We provide real-life examples.en_US
dc.description.publishedMonth10
dc.identifier.citationIslam, M. Qamarul; Tiku, Moti L. (2004). "Multiple linear regression model under nonnormality", Communications in Statistics - Theory and Methods, Vol.33, No.10, pp.2443-2467.en_US
dc.identifier.doi10.1081/STA-200031519
dc.identifier.endpage2467en_US
dc.identifier.issn3610926
dc.identifier.issue10en_US
dc.identifier.startpage2443en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/7959
dc.identifier.volume33en_US
dc.language.isoenen_US
dc.relation.ispartofCommunications in Statistics - Theory and Methodsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHypothesis Testingen_US
dc.subjectLeast Squaresen_US
dc.subjectM Estimatorsen_US
dc.subjectModified Likelihooden_US
dc.subjectMultiple Linear Regressionen_US
dc.subjectNonnormalityen_US
dc.subjectOutliersen_US
dc.subjectRobustnessen_US
dc.titleMultiple linear regression model under nonnormalitytr_TR
dc.titleMultiple linear regression model under nonnormalityen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: