Extending a Sentiment Lexicon With Synonym-Antonym Datasets: Swnettr Plus
| dc.contributor.author | Genc, Burkay | |
| dc.contributor.author | Sever, Hayri | |
| dc.contributor.author | Saglam, Fatih | |
| dc.contributor.authorID | 11916 | tr_TR |
| dc.contributor.other | 06.01. Bilgisayar Mühendisliği | |
| dc.contributor.other | 06. Mühendislik Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2020-03-09T13:12:02Z | |
| dc.date.accessioned | 2025-09-18T12:49:15Z | |
| dc.date.available | 2020-03-09T13:12:02Z | |
| dc.date.available | 2025-09-18T12:49:15Z | |
| dc.date.issued | 2019 | |
| dc.description | Sever, Hayri/0000-0002-8261-0675; Genc, Burkay/0000-0001-5134-1487; Saglam, Fatih/0000-0002-6818-3865 | en_US |
| dc.description.abstract | In our previous studies on developing a general-purpose Turkish sentiment lexicon, we constructed SWNetTR-PLUS, a sentiment lexicon of 37K words. In this paper, we show how to use Turkish synonym and antonym word pairs to extend SWNetTR-PLUS by almost 33% to obtain SWNetTR++, a Turkish sentiment lexicon of 49K words. The extension was done by transferring the problem into the graph domain, where nodes are words, and edges are synonym- antonym relations between words, and propagating the existing tone and polarity scores to the newly added words using an algorithm we have developed. We tested the existing and new lexicons using a manually labeled Turkish news media corpus of 500 news texts. The results show that our method yielded a significantly more accurate lexicon than SWNetTR-PLUS, resulting in an accuracy increase from 72.2% to 80.4%. At this level, we have now maximized the accuracy rates of translation-based sentiment analysis approaches, which first translate a Turkish text to English and then do the analysis using English sentiment lexicons. | en_US |
| dc.identifier.citation | Saglam, Fatih; Genc, Burkay; Sever, Hayri, "Extending a sentiment lexicon with synonym-antonym datasets: SWNetTR plus", Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 27, No. 3, pp. 1806-1820, (2019). | en_US |
| dc.identifier.doi | 10.3906/elk-1809-120 | |
| dc.identifier.issn | 1300-0632 | |
| dc.identifier.issn | 1303-6203 | |
| dc.identifier.scopus | 2-s2.0-85065830690 | |
| dc.identifier.uri | https://doi.org/10.3906/elk-1809-120 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/12308 | |
| dc.language.iso | en | en_US |
| dc.publisher | Tubitak Scientific & Technological Research Council Turkey | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Turkish Sentiment Lexicon | en_US |
| dc.subject | Sentiment Analysis | en_US |
| dc.subject | Sentiment Lexicon | en_US |
| dc.subject | Graph Model | en_US |
| dc.subject | Gdelt | en_US |
| dc.subject | Swnettr Plus | en_US |
| dc.title | Extending a Sentiment Lexicon With Synonym-Antonym Datasets: Swnettr Plus | en_US |
| dc.title | Extending a sentiment lexicon with synonym-antonym datasets: SWNetTR plus | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Sever, Hayri/0000-0002-8261-0675 | |
| gdc.author.id | Genc, Burkay/0000-0001-5134-1487 | |
| gdc.author.id | Saglam, Fatih/0000-0002-6818-3865 | |
| gdc.author.institutional | Sever, Hayri | |
| gdc.author.scopusid | 58771778200 | |
| gdc.author.scopusid | 57202163971 | |
| gdc.author.scopusid | 55902090100 | |
| gdc.author.wosid | Saglam, Fatih/Abi-4130-2020 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Saglam, Fatih] Hacettepe Univ, Dept Comp Engn, Ankara, Turkey; [Genc, Burkay] Hacettepe Univ, Policy & Strategy Studies, Ankara, Turkey; [Sever, Hayri] Cankaya Univ, Dept Comp Engn, Ankara, Turkey | en_US |
| gdc.description.endpage | 1820 | en_US |
| gdc.description.issue | 3 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 1806 | en_US |
| gdc.description.volume | 27 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q4 | |
| gdc.identifier.openalex | W2946238344 | |
| gdc.identifier.trdizinid | 336883 | |
| gdc.identifier.wos | WOS:000469016000018 | |
| gdc.openalex.fwci | 0.92170647 | |
| gdc.openalex.normalizedpercentile | 0.8 | |
| gdc.opencitations.count | 13 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.mendeley | 24 | |
| gdc.plumx.scopuscites | 10 | |
| gdc.scopus.citedcount | 10 | |
| gdc.wos.citedcount | 7 | |
| relation.isAuthorOfPublication | a26d16c1-fa24-4ceb-b2c8-8517c96e2534 | |
| relation.isAuthorOfPublication.latestForDiscovery | a26d16c1-fa24-4ceb-b2c8-8517c96e2534 | |
| relation.isOrgUnitOfPublication | 12489df3-847d-4936-8339-f3d38607992f | |
| relation.isOrgUnitOfPublication | 43797d4e-4177-4b74-bd9b-38623b8aeefa | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 12489df3-847d-4936-8339-f3d38607992f |